forked from markmikkelsen/Gannet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSignalAveraging.m
191 lines (157 loc) · 6.79 KB
/
SignalAveraging.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
function MRS_struct = SignalAveraging(MRS_struct, AllFramesFT, AllFramesFTrealign, ii, kk, vox)
% Initialize some variables/functions
MSEfun = @(a,b) sum((a - b).^2) / length(a);
experiment = {'A','B','C','D'};
method = 'MSE'; % Options: 'MSE', 'MSE2', 'WACFM'
if MRS_struct.p.HERMES
n = 4;
else
n = 2;
end
if strcmp(MRS_struct.p.alignment, 'none')
fprintf('\n');
end
if MRS_struct.p.weighted_averaging && size(MRS_struct.fids.data,2) >= 4 % weighted averaging
fprintf('Averaging subspectra using weighted averaging and performing subtraction...');
MRS_struct.p.weighted_averaging_method = method;
MRS_struct.out.signal_averaging.w{ii} = zeros(1,size(MRS_struct.fids.data,2));
freqRange = MRS_struct.p.sw(ii) / MRS_struct.p.LarmorFreq(ii);
freq = (MRS_struct.p.npoints(ii) + 1 - (1:MRS_struct.p.npoints(ii))) / MRS_struct.p.npoints(ii) * freqRange + 4.68 - freqRange/2;
freqLim = freq <= 3.4 & freq >= 1.8;
for jj = 1:n
if strcmp(MRS_struct.p.vendor, 'Philips') && strcmp(MRS_struct.p.seqorig, 'Philips')
ind = MRS_struct.fids.ON_OFF == abs(jj-2);
else
ind = jj:n:size(AllFramesFTrealign,2);
end
% Undo zerofill
spec = ifft(ifftshift(AllFramesFTrealign(:,ind),1),[],1);
spec = fftshift(fft(spec(1:MRS_struct.p.npoints(ii),:),[],1),1);
switch method
case 'MSE'
D = zeros(size(AllFramesFTrealign,2)/n);
for ll = 1:size(AllFramesFTrealign,2)/n
for mm = 1:size(AllFramesFTrealign,2)/n
D(ll,mm) = MSEfun(real(spec(freqLim,ll)), real(spec(freqLim,mm)));
end
end
D(~D) = NaN;
d = median(D,'omitnan');
w = d.^-2 / sum(d.^-2);
case 'MSE2'
d = MSEfun(real(spec(freqLim,:)), median(real(spec(freqLim,:)),2));
w = d.^-2 / sum(d.^-2);
case 'WACFM'
[~,w] = WACFM(real(spec(freqLim,:)), 'GCD');
% close(23);
otherwise
error('Weighted averaging method not recognized!');
end
MRS_struct.out.signal_averaging.w{ii}(ind) = w;
w = repmat(w, [size(AllFramesFTrealign,1) 1]);
MRS_struct.spec.(vox{kk}).subspec.(experiment{jj})(ii,:) = sum(w .* AllFramesFTrealign(:,ind),2);
end
else % conventional averaging
fprintf('Averaging subspectra and performing subtraction...');
MRS_struct.p.weighted_averaging = 0; % in case there are 4 or less averages but weighted averaging was still set
for jj = 1:n
if strcmp(MRS_struct.p.vendor, 'Philips') && strcmp(MRS_struct.p.seqorig, 'Philips')
ind = MRS_struct.fids.ON_OFF == abs(jj-2);
else
ind = jj:n:size(AllFramesFTrealign,2);
end
ind = ismember(1:size(AllFramesFTrealign,2), ind);
MRS_struct.spec.(vox{kk}).subspec.(experiment{jj})(ii,:) = mean(AllFramesFTrealign(:,ind & MRS_struct.out.reject{ii} == 0),2);
end
end
for jj = 1:length(MRS_struct.p.target)
if strcmp(MRS_struct.p.vendor, 'Philips') && strcmp(MRS_struct.p.seqorig, 'Philips')
ON_ind = 1;
OFF_ind = 2;
else
ON_ind = find(MRS_struct.fids.ON_OFF(jj,1:n) == 1);
OFF_ind = find(MRS_struct.fids.ON_OFF(jj,1:n) == 0);
end
if MRS_struct.p.HERMES
% ON
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).on(ii,:) = ...
(MRS_struct.spec.(vox{kk}).subspec.(experiment{ON_ind(1)})(ii,:) + ...
MRS_struct.spec.(vox{kk}).subspec.(experiment{ON_ind(2)})(ii,:)) / 2;
% OFF
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).off(ii,:) = ...
(MRS_struct.spec.(vox{kk}).subspec.(experiment{OFF_ind(1)})(ii,:) + ...
MRS_struct.spec.(vox{kk}).subspec.(experiment{OFF_ind(2)})(ii,:)) / 2;
% OFF_OFF
OFF_OFF_ind = all(MRS_struct.fids.ON_OFF(:,1:n)' == 0,2);
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).off_off(ii,:) = ...
MRS_struct.spec.(vox{kk}).subspec.(experiment{OFF_OFF_ind})(ii,:);
else
% ON
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).on(ii,:) = ...
MRS_struct.spec.(vox{kk}).subspec.(experiment{ON_ind})(ii,:);
% OFF
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).off(ii,:) = ...
MRS_struct.spec.(vox{kk}).subspec.(experiment{OFF_ind})(ii,:);
end
% DIFF
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).diff(ii,:) = ...
(MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).on(ii,:) - ...
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).off(ii,:)) / 2;
% DIFF (unaligned)
MRS_struct.spec.(vox{kk}).(MRS_struct.p.target{jj}).diff_noalign(ii,:) = ...
(mean(AllFramesFT(:,MRS_struct.fids.ON_OFF(jj,:) == 1),2) - ...
mean(AllFramesFT(:,MRS_struct.fids.ON_OFF(jj,:) == 0),2)) / 2;
end
end
function [v, w] = WACFM(x, costFun)
% Weighted averaging based on criterion function minimization (WACFM).
% Algorithm from Pander T. A new approach to robust, weighted signal
% averaging. Biocybern Biomed Eng. 2015;35(4):317-327. doi:10.1016/j.bbe.2015.06.002
[~,N] = size(x);
kStop = 100;
v = median(x,2);
w = zeros(kStop,N);
e = 1e-6;
m = 2;
p = 0.2;
sigma = 1;
const = max(abs(v)); % constant to increase robustness to local minima
% (Kotowski et al. Biocybern Biomed Eng. 2019. doi:10.1016/j.bbe.2019.09.002)
for k = 1:kStop
z = x - v;
w(k,:) = weights(z, costFun, const);
% figure(23);
% cla;
% plot(w(1:k,:)');
% drawnow;
% pause(0.25);
if (k > 1 && norm(w(k,:) - w(k-1,:)) < e) || k == kStop
w = w(k,:);
switch costFun % normalize optimal weights so they sum to unity
case 'square'
w = w.^m ./ sum(w.^m);
case 'GCD'
w = w.^m .* sum((abs(z).^(2-p)) ./ p .* (sigma.^p + abs(z).^p)).^-1 ./ ...
sum(w.^m .* sum((abs(z).^(2-p)) ./ p .* (sigma.^p + abs(z).^p)).^-1);
end
break
end
switch costFun
case 'square'
v = sum(w(k,:).^m .* x,2) ./ sum(w(k,:).^m);
case 'GCD'
v = sum(w(k,:).^m .* x .* sum((abs(z).^(2-p)) ./ p .* (sigma.^p + abs(z).^p)).^-1,2) ./ ...
sum(w(k,:).^m .* sum((abs(z).^(2-p)) ./ p .* (sigma.^p + abs(z).^p)).^-1);
end
end
function w = weights(z, costFun, const)
switch costFun
case 'square'
w = (vecnorm(z) + const).^(2./(1-m)) ./ ...
sum((vecnorm(z) + const).^(2./(1-m)));
case 'GCD'
w = sum(log(1 + (abs(z) ./ sigma).^p) + const).^(1./(1-m)) ./ ...
sum(sum(log(1 + (abs(z) ./ sigma).^p) + const).^(1./(1-m)));
end
end
end