-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun_gegl.py
109 lines (93 loc) · 4.67 KB
/
run_gegl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import random
import json
import argparse
import os
import torch
from torch.utils.data import DataLoader
from torch.optim import Adam
from runner.gegl_trainer import GeneticExpertGuidedLearningTrainer
from runner.guacamol_generator import GeneticExpertGuidedLearningGenerator
from model.neural_apprentice import SmilesGenerator, SmilesGeneratorHandler
from model.genetic_expert import GeneticOperatorHandler
from util.storage.priority_queue import MaxRewardPriorityQueue
from util.storage.recorder import Recorder
from util.chemistry.benchmarks import load_benchmark
from util.smiles.char_dict import SmilesCharDictionary
import neptune
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--benchmark_id", type=int, default=12)
parser.add_argument("--dataset", type=str, default="guacamol")
parser.add_argument("--max_smiles_length", type=int, default=100)
parser.add_argument("--apprentice_load_dir", type=str, default="./resource/checkpoint/guacamol")
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--sample_batch_size", type=int, default=512)
parser.add_argument("--optimize_batch_size", type=int, default=256)
parser.add_argument("--mutation_rate", type=float, default=0.01)
parser.add_argument("--num_steps", type=int, default=200)
parser.add_argument("--num_keep", type=int, default=1024)
parser.add_argument("--max_sampling_batch_size", type=int, default=1024)
parser.add_argument("--apprentice_sampling_batch_size", type=int, default=8192)
parser.add_argument("--expert_sampling_batch_size", type=int, default=8192)
parser.add_argument("--apprentice_training_batch_size", type=int, default=256)
parser.add_argument("--num_apprentice_training_steps", type=int, default=8)
parser.add_argument("--num_jobs", type=int, default=8)
parser.add_argument("--record_filtered", action="store_true")
args = parser.parse_args()
# Prepare CUDA device
device = torch.device(0)
# Initialize neptune
neptune.init(project_qualified_name="sungsoo.ahn/deep-molecular-optimization")
experiment = neptune.create_experiment(name="gegl", params=vars(args))
neptune.append_tag(args.benchmark_id)
# Load benchmark, i.e., the scoring function and its corresponding protocol
benchmark, scoring_num_list = load_benchmark(args.benchmark_id)
# Load character directory used for mapping atoms to integers
char_dict = SmilesCharDictionary(dataset=args.dataset, max_smi_len=args.max_smiles_length)
# Prepare max-reward priority queues
apprentice_storage = MaxRewardPriorityQueue()
expert_storage = MaxRewardPriorityQueue()
# Prepare neural apprentice (we use the weights pretrained on existing dataset)
apprentice = SmilesGenerator.load(load_dir=args.apprentice_load_dir)
apprentice = apprentice.to(device)
apprentice_optimizer = Adam(apprentice.parameters(), lr=args.learning_rate)
apprentice_handler = SmilesGeneratorHandler(
model=apprentice,
optimizer=apprentice_optimizer,
char_dict=char_dict,
max_sampling_batch_size=args.max_sampling_batch_size,
)
apprentice.train()
# Prepare genetic expert
expert_handler = GeneticOperatorHandler(mutation_rate=args.mutation_rate)
# Prepare trainer that collect samples from the models & optimize the neural apprentice
trainer = GeneticExpertGuidedLearningTrainer(
apprentice_storage=apprentice_storage,
expert_storage=expert_storage,
apprentice_handler=apprentice_handler,
expert_handler=expert_handler,
char_dict=char_dict,
num_keep=args.num_keep,
apprentice_sampling_batch_size=args.apprentice_sampling_batch_size,
expert_sampling_batch_size=args.expert_sampling_batch_size,
apprentice_training_batch_size=args.apprentice_training_batch_size,
num_apprentice_training_steps=args.num_apprentice_training_steps,
init_smis=[],
)
# Prepare recorder that takes care of intermediate logging
recorder = Recorder(scoring_num_list=scoring_num_list, record_filtered=args.record_filtered)
# Prepare our version of GoalDirectedGenerator for evaluating our algorithm
guacamol_generator = GeneticExpertGuidedLearningGenerator(
trainer=trainer,
recorder=recorder,
num_steps=args.num_steps,
device=device,
scoring_num_list=scoring_num_list,
num_jobs=args.num_jobs,
)
# Run the experiment
result = benchmark.assess_model(guacamol_generator)
# Dump the final result to neptune
neptune.set_property("benchmark_score", result.score)