-
Notifications
You must be signed in to change notification settings - Fork 13
/
particle_swarm_attack.py
143 lines (110 loc) · 4.1 KB
/
particle_swarm_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import tensorflow as tf
import keras.backend as K
import cPickle as pickle
import os
from mnist import data_mnist, set_mnist_flags, load_model
from tf_utils import tf_test_error_rate, batch_eval
from keras.utils import np_utils
from attack_utils import gen_grad
from matplotlib import image as img
import time
from os.path import basename
from pyswarm import pso
import argparse
from tensorflow.python.platform import flags
FLAGS = flags.FLAGS
BATCH_SIZE = 100
BATCH_EVAL_NUM = 10
# PSO parameters
swarmsize = 100
maxiter = 100
omega = 0.5
p_wt = 0.5
s_wt = 0.5
parser = argparse.ArgumentParser()
parser.add_argument("target_model", help="target model for attack")
args = parser.parse_args()
eps = 0.3
target_model_name = basename(args.target_model)
set_mnist_flags()
np.random.seed(0)
tf.set_random_seed(0)
x = K.placeholder((None,
FLAGS.IMAGE_ROWS,
FLAGS.IMAGE_COLS,
FLAGS.NUM_CHANNELS))
y = K.placeholder((None, FLAGS.NUM_CLASSES))
dim = int(FLAGS.IMAGE_ROWS*FLAGS.IMAGE_COLS)
_, _, X_test, Y_test = data_mnist()
print('Loaded data')
# target model for crafting adversarial examples
target_model = load_model(args.target_model)
target_model_name = basename(target_model_name)
logits = target_model(x)
prediction = K.softmax(logits)
sess = tf.Session()
print('Creating session')
targets = np.argmax(Y_test[:BATCH_SIZE*BATCH_EVAL_NUM], 1)
# elif RANDOM is False:
# targets = np.array([target]*(BATCH_SIZE*BATCH_EVAL_NUM))
# elif RANDOM is True:
# targets = np.random.randint(10, size = BATCH_SIZE*BATCH_EVAL_NUM)
targets_cat = np_utils.to_categorical(targets, FLAGS.NUM_CLASSES).astype(np.float32)
def loss(X):
X = X.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
confidence = K.get_session().run([prediction], feed_dict={x: X, K.learning_phase(): 0})[0]
# confidence[:,curr_target] = 1e-4
max_conf_i = np.argmax(confidence, 1)
max_conf = np.max(confidence, 1)[0]
if max_conf_i == curr_target:
return max_conf
elif max_conf_i != curr_target:
return -1.0 * max_conf
def logit_loss(X):
X = X.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
confidence = K.get_session().run([prediction], feed_dict={x: X, K.learning_phase(): 0})[0]
# confidence[:,curr_target] = 1e-4
logits = np.log(confidence)
logit_t = logits[:, curr_target]
logits[:, curr_target] = 1e-4
max_logit_i = np.argmax(logits, 1)
logit_max = logits[:, max_logit_i]
return logit_t - logit_max
success = 0
adv_conf_avg = 0.0
sample_num = 10
ofile = open('output_data/pso_adv_success.txt', 'a')
time1 = time.time()
perturbation = 0.0
for i in range(sample_num):
print(i)
X_ini = X_test[i].reshape(dim)
curr_target = targets[i]
ones_vec = np.ones_like(X_ini)
lower_bound = np.clip(X_ini - eps * ones_vec, 0, 1)
upper_bound = np.clip(X_ini + eps * ones_vec, 0 ,1)
Xopt, fopt = pso(logit_loss, lower_bound, upper_bound, swarmsize = 100, maxiter=100, debug = False)
perturbation += np.linalg.norm(X_ini - Xopt)
Xopt = Xopt.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
adv_pred_np = K.get_session().run([prediction], feed_dict={x: Xopt, K.learning_phase(): 0})[0]
adv_label = np.argmax(adv_pred_np, 1)
adv_conf = np.max(adv_pred_np, 1)
if adv_label[0]!=curr_target:
success += 1
adv_conf_avg += adv_conf[0]
if i<5:
img.imsave('images/pso/'+
'{}_{}_{}_{}_{}.png'.format(target_model_name, i,
adv_label, curr_target, eps),
Xopt.reshape(FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS)*255, cmap='gray')
# print(fopt, adv_conf[0])
time2 = time.time()
perturbation = perturbation / sample_num
ofile.write('PSO params: swarmsize {}, maxiter {}, omega {}, p_wt {}, s_wt {} \n'
.format(swarmsize, maxiter, omega, p_wt, s_wt))
adv_conf_avg = adv_conf_avg/success
ofile.write('{}, {}: {} of {}, {} \n'.format(target_model_name, eps, success, sample_num, adv_conf_avg, perturbation))
print(success)
print(perturbation)
print('{:.2f}'.format((time2-time1)/sample_num))