-
Notifications
You must be signed in to change notification settings - Fork 8
/
modules.py
337 lines (290 loc) · 15.9 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# -*- coding: utf-8 -*-
#/usr/bin/python2
import tensorflow as tf
import numpy as np
from util import *
# from numpy.random import seed
# seed(21)
# import sys
# sys.path.append("..")
# from STAMP.FwNn3AttLayer import FwNnAttLayer
def embedding(inputs, vocab_size, num_units, zero_pad=True, scale=True, stddev=0.02, l2_reg=0.0, scope="embedding", with_t=False, reuse=False):
'''Embeds a given tensor.
Args:
inputs: A `Tensor` with type `int32` or `int64` containing the ids
to be looked up in `lookup table`.
vocab_size: An int. Vocabulary size.
num_units: An int. Number of embedding hidden units.
zero_pad: A boolean. If True, all the values of the fist row (id 0)
should be constant zeros.
scale: A boolean. If True. the outputs is multiplied by sqrt num_units.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns:
A `Tensor` with one more rank than inputs's. The last dimensionality
should be `num_units`.
'''
init_table = np.random.normal(0, stddev, [vocab_size, num_units])
if zero_pad:
init_table[0] = [0.0] * num_units
lookup_table = tf.Variable(init_table, dtype=tf.float32, trainable=True, name=scope)
outputs = tf.nn.embedding_lookup(lookup_table, inputs, max_norm=1)
if scale:
outputs = outputs * (num_units ** 0.5)
if with_t: return outputs, lookup_table
else: return outputs
def linear_2d(inputs, edim1, out_edim, stddev=0.05, scope="linear_2d_layer", active='tanh', reuse=False):
'''
the linear transformation layer.
inputs: input 2d vector # shape: [batch_size, edim1]
return = input * w + b # shape: [batch_size, out_edim]
'''
with tf.variable_scope(scope, reuse=reuse):
w = tf.Variable(tf.random_normal([edim1, out_edim], stddev=stddev), name='w1', trainable=True)
b = tf.Variable(tf.random_normal([out_edim], stddev=stddev), name='b1', trainable=True)
res = tf.matmul(inputs, w) + b
if active!=None:
res = activer(res, active)
return res
def linear_3d(inputs, edim1, out_edim, stddev=0.05, scope="linear_3d_layer", active='tanh', reuse=False):
'''
the linear transformation layer.
inputs: input 3d vector # shape: [batch_size, time_step, edim1]
return = input * w + b # shape: [batch_size, time_step, out_edim]
'''
batch_size = tf.shape(inputs)[0]
with tf.variable_scope(scope, reuse=reuse):
w = tf.Variable(tf.random_normal([edim1, out_edim], stddev=stddev), name='w_3d', trainable=True)
w = tf.reshape(tf.tile(w, [batch_size, 1]), [batch_size, edim1, out_edim])
res = tf.matmul(inputs, w)
if active!=None:
res = activer(res, active)
return res
def single_attention_layer(inputs, content, edim1, edim2, scope="content_attention", hidden_size=250, stddev=0.05, reuse=False):
'''
add content attention
inputs: input 3d vector # shape: [batch_size, time_step, edim]
return weighted sum # shape: [batch_size, edim]
'''
time_step = tf.shape(inputs)[1]
edim = tf.shape(inputs)[2]
with tf.variable_scope(scope, reuse=reuse):
alpha = count_alpha_s(inputs, content, edim1, edim2, hidden_size, stddev) # [batch_size, time_step]
res = tf.matmul(tf.reshape(alpha, [-1, 1, time_step]), inputs) # [batch_size, 1, edim]
res = tf.reshape(res, [-1, edim])
return res, alpha
def count_alpha_s(inputs, content, edim1, edim2, hidden_size, stddev, active='sigmoid'):
'''
count attention weights
inputs: input 3d vector # shape: [batch_size, time_step, edim1]
content: input 3d vector # shape: [batch_size, time_step, edim2]
return alpha = softmax(tanh(w1*inputs+w2*content)) # shape: [batch_size, time_step]
'''
time_step = tf.shape(inputs)[1]
res_input = linear_3d(inputs, edim1, hidden_size, stddev, "input_linear_trans", active=None) # [batch_size, time_step, hidden_size]
res_cont = linear_3d(content, edim2, hidden_size, stddev, "cont_linear_trans", active=None) # [batch_size, time_step, hidden_size]
res_sum = res_input + res_cont
res_act = activer(res_sum, active) # [batch_size, time_step, hidden_size]
res_act = linear_3d(res_act, hidden_size, 1, stddev, "res_linear_trans", active=None) # [batch_size, time_step, 1]
res_act = tf.reshape(res_act, [-1, time_step])
alpha = normalizer(res_act)
return alpha
def multi_attention_layer(inputs, content, interval, click_time, edim1, edim2, edim3, scope="multi_attention", hidden_size=250, stddev=0.05, reuse=False):
'''
add attention
inputs: input 3d vector # shape: [batch_size, time_step, edim1]
content: input 3d vector # shape: [batch_size, time_step, edim2]
interval: numerical time # shape: [batch_size, time_step, 1]
click_time: session_level time vector # shape: [batch_size, edim3]
return weighted sum # shape: [batch_size, edim1]
'''
time_step = tf.shape(inputs)[1]
edim = tf.shape(inputs)[2]
with tf.variable_scope(scope, reuse=reuse):
alpha = count_alpha_m(inputs, content, interval, click_time, edim1, edim2, edim3, hidden_size, stddev) # [batch_size, time_step]
res = tf.matmul(tf.reshape(alpha, [-1, 1, time_step]), inputs) # [batch_size, 1, edim]
res = tf.reshape(res, [-1, edim])
return res, alpha
def count_alpha_m(inputs, content, interval, click_time, edim1, edim2, edim3, hidden_size, stddev, active='sigmoid'):
'''
count attention weights
return alpha = softmax(tanh(w1*inputs+w2*content+w3*interval)) + softmax(tanh(inputs*w4*click_time)) # shape: [batch_size, time_step]
'''
time_step = tf.shape(inputs)[1]
res_input = linear_3d(inputs, edim1, hidden_size, stddev, "input_linear_trans", active=None) # [batch_size, time_step, hidden_size]
res_cont = linear_3d(content, edim2, hidden_size, stddev, "cont_linear_trans", active=None) # [batch_size, time_step, hidden_size]
res_sum = res_input + res_cont
if interval!=None:
res_inter = linear_3d(interval, edim3, hidden_size, stddev, "inter_linear_trans", active=None) # [batch_size, time_step, hidden_size]
res_sum += res_inter
res_act1 = activer(res_sum, active) # [batch_size, time_step, hidden_size]
res_act1 = linear_3d(res_act1, hidden_size, 1, stddev, "res_linear_trans", active=None) # [batch_size, time_step, 1]
res_act1 = tf.reshape(res_act1, [-1, time_step])
alpha = normalizer(res_act1)
if click_time!=None:
query = linear_2d(click_time, 128, hidden_size, stddev, "query_trans1", active='relu') # [batch_size, hidden_size]
query = linear_2d(query, hidden_size, edim1, stddev, "query_trans2") # [batch_size, edim1]
res_act2 = tf.matmul(inputs, tf.expand_dims(query, -1)) # [batch_size, time_step, 1]
alpha2 = tf.reshape(normalizer(res_act2), [-1, time_step])
alpha += alpha2
# if interval!=None:
# click_time = tf.reshape(tf.tile(click_time, [time_step, 1]), [-1, time_step, edim3])
# query = linear_3d(click_time, edim3, hidden_size, stddev, "inter_query_trans1", active=None) # [batch_size, time_step, hidden_size]
# key = linear_3d(interval, edim3//2, hidden_size, stddev, "inter_query_trans2", active=None) # [batch_size, time_step, hidden_size]
# res_act3 = tf.matmul(tf.transpose(tf.expand_dims(query, -1), perm=[0, 1, 3, 2]), tf.expand_dims(key, -1)) # [batch_size, time_step, 1]
# alpha3 = tf.reshape(normalizer(res_act3), [-1, time_step])
# alpha += alpha3
return alpha
# def multi_attention_layer(inputs, interval, click_time, edim1, edim2, scope="multi_attention", hidden_size=250, stddev=0.05, reuse=False):
# '''
# add attention
# inputs: input 3d vector # shape: [batch_size, time_step, edim1]
# interval: numerical time # shape: [batch_size, time_step, 1]
# click_time: session_level time vector # shape: [batch_size, edim2]
# return weighted sum # shape: [batch_size, edim1]
# '''
# time_step = tf.shape(inputs)[1]
# edim = tf.shape(inputs)[2]
# with tf.variable_scope(scope, reuse=reuse):
# alpha = count_alpha_m(inputs, interval, click_time, edim1, edim2, hidden_size, stddev) # [batch_size, time_step]
# res = tf.matmul(tf.reshape(alpha, [-1, 1, time_step]), inputs) # [batch_size, 1, edim]
# res = tf.reshape(res, [-1, edim])
# return res, alpha
# def count_alpha_m(inputs, interval, click_time, edim1, edim2, hidden_size, stddev, active='sigmoid'):
# '''
# count attention weights
# return alpha = softmax(tanh(w1*inputs+w2*content+w3*interval)) + softmax(tanh(inputs*w4*click_time)) # shape: [batch_size, time_step]
# '''
# time_step = tf.shape(inputs)[1]
# res_input = linear_3d(inputs, edim1, hidden_size, stddev, "input_linear_trans", active=None) # [batch_size, time_step, hidden_size]
# res_sum = res_input
# if interval!=None:
# res_inter = linear_3d(interval, 1, hidden_size, stddev, "inter_linear_trans", active=None) # [batch_size, time_step, hidden_size]
# res_sum += res_inter
# res_act1 = activer(res_sum, active) # [batch_size, time_step, hidden_size]
# res_act1 = linear_3d(res_act1, hidden_size, 1, stddev, "res_linear_trans", active=None) # [batch_size, time_step, 1]
# res_act1 = tf.reshape(res_act1, [-1, time_step])
# alpha = normalizer(res_act1)
# if click_time!=None:
# query = linear_2d(click_time, edim2, hidden_size, stddev, "query_trans1", active='relu') # [batch_size, hidden_size]
# query = linear_2d(query, hidden_size, edim1, stddev, "query_trans2") # [batch_size, edim1]
# res_act2 = tf.matmul(inputs, tf.expand_dims(query, -1)) # [batch_size, time_step, 1]
# alpha2 = tf.reshape(normalizer(res_act2), [-1, time_step])
# alpha += alpha2
# return alpha
def normalize(inputs, epsilon = 1e-8, scope="ln", reuse=None):
'''Applies layer normalization.
Args:
inputs: A tensor with 2 or more dimensions, where the first dimension has
`batch_size`.
epsilon: A floating number. A very small number for preventing ZeroDivision Error.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
with tf.variable_scope(scope, reuse=reuse):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta= tf.Variable(tf.zeros(params_shape))
gamma = tf.Variable(tf.ones(params_shape))
normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
outputs = gamma * normalized + beta
return outputs
def multihead_attention(queries, keys, num_units=None, num_heads=8, dropout_rate=0, is_training=True, causality=False, scope="multihead_attention", reuse=None, with_qk=False):
'''Applies multihead attention.
Args:
queries: A 3d tensor with shape of [N, T_q, C_q].
keys: A 3d tensor with shape of [N, T_k, C_k].
num_units: A scalar. Attention size.
dropout_rate: A floating point number.
is_training: Boolean. Controller of mechanism for dropout.
causality: Boolean. If true, units that reference the future are masked.
num_heads: An int. Number of heads.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns
A 3d tensor with shape of (N, T_q, C)
'''
with tf.variable_scope(scope, reuse=reuse):
# Set the fall back option for num_units
if num_units is None:
num_units = queries.get_shape().as_list[-1]
# Linear projections
# Q = tf.layers.dense(queries, num_units, activation=tf.nn.relu) # (N, T_q, C)
# K = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
# V = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
Q = tf.layers.dense(queries, num_units, activation=None) # (N, T_q, C)
K = tf.layers.dense(keys, num_units, activation=None) # (N, T_k, C)
V = tf.layers.dense(keys, num_units, activation=None) # (N, T_k, C)
# Split and concat
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, C/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, C/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, C/h)
# Multiplication
outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1])) # (h*N, T_q, T_k)
# Scale
outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5)
# Key Masking
key_masks = tf.sign(tf.abs(tf.reduce_sum(keys, axis=-1))) # (N, T_k)
key_masks = tf.tile(key_masks, [num_heads, 1]) # (h*N, T_k)
key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1]) # (h*N, T_q, T_k)
paddings = tf.ones_like(outputs)*(-2**32+1)
outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs) # (h*N, T_q, T_k)
# Causality = Future blinding
if causality:
diag_vals = tf.ones_like(outputs[0, :, :]) # (T_q, T_k)
tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1]) # (h*N, T_q, T_k)
paddings = tf.ones_like(masks)*(-2**32+1)
outputs = tf.where(tf.equal(masks, 0), paddings, outputs) # (h*N, T_q, T_k)
# Activation
outputs = tf.nn.softmax(outputs) # (h*N, T_q, T_k)
# Query Masking
query_masks = tf.sign(tf.abs(tf.reduce_sum(queries, axis=-1))) # (N, T_q)
query_masks = tf.tile(query_masks, [num_heads, 1]) # (h*N, T_q)
query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(keys)[1]]) # (h*N, T_q, T_k)
outputs *= query_masks # broadcasting. (N, T_q, C)
# Dropouts
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
# Weighted sum
outputs = tf.matmul(outputs, V_) # ( h*N, T_q, C/h)
# Restore shape
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, C)
# Residual connection
outputs += queries
# Normalize
#outputs = normalize(outputs) # (N, T_q, C)
if with_qk: return Q,K
else: return outputs
def feedforward(inputs, num_units=[2048, 512], scope="multihead_attention", dropout_rate=0.2, is_training=True, reuse=None):
'''Point-wise feed forward net.
Args:
inputs: A 3d tensor with shape of [N, T, C].
num_units: A list of two integers.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns:
A 3d tensor with the same shape and dtype as inputs
'''
with tf.variable_scope(scope, reuse=reuse):
# Inner layer
params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1,
"activation": tf.nn.relu, "use_bias": True}
outputs = tf.layers.conv1d(**params)
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
# Readout layer
params = {"inputs": outputs, "filters": num_units[1], "kernel_size": 1,
"activation": None, "use_bias": True}
outputs = tf.layers.conv1d(**params)
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
# Residual connection
outputs += inputs
# Normalize
#outputs = normalize(outputs)
return outputs