-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_full.py
251 lines (200 loc) · 9.89 KB
/
train_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import argparse
import numpy as np
import sys
import os
import os.path as osp
import scipy.misc
import random
import timeit
import pickle
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transform
from model.deeplabv2 import Res_Deeplab
#from model.deeplabv3p import Res_Deeplab
from utils.loss import CrossEntropy2d
from data.voc_dataset import VOCDataSet, VOCGTDataSet
from data import get_loader, get_data_path
from data.augmentations import *
start = timeit.default_timer()
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
# dataset params
NUM_CLASSES = 21 # 21 for PASCAL-VOC / 60 for PASCAL-Context
DATASET = 'pascal_voc' #pascal_voc or pascal_context
DATA_DIRECTORY = './data/voc_dataset/'
DATA_LIST_PATH = './data/voc_list/train_aug.txt'
CHECKPOINT_DIR = './checkpoints/voc_full/'
MODEL = 'DeepLab'
BATCH_SIZE = 10
NUM_STEPS = 40000
SAVE_PRED_EVERY = 5000
INPUT_SIZE = '321, 321'
IGNORE_LABEL = 255 # 255 for PASCAL-VOC / -1 for PASCAL-Context
LEARNING_RATE = 2.5e-4
WEIGHT_DECAY = 0.0005
POWER = 0.9
MOMENTUM = 0.9
NUM_WORKERS = 4
RANDOM_SEED = 1234
RESTORE_FROM = './pretrained_models/resnet101-5d3b4d8f.pth' # ImageNet pretrained encoder
SPLIT_ID = './splits/voc/split_0.pkl'
LABELED_RATIO= None # use 100% labeled data
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab/DRN")
parser.add_argument("--dataset", type=str, default=DATASET,
help="dataset to be used")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--split-id", type=str, default=SPLIT_ID,
help="name of split pickle file")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--ignore-label", type=float, default=IGNORE_LABEL,
help="label value to ignored for loss calculation")
parser.add_argument("--labeled-ratio", type=float, default=LABELED_RATIO,
help="ratio of labeled samples/total samples")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of iterations")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--checkpoint-dir", type=str, default=CHECKPOINT_DIR,
help="Where to save checkpoints of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
return parser.parse_args()
args = get_arguments()
def loss_calc(pred, label, gpu):
label = Variable(label.long()).cuda(gpu)
criterion = CrossEntropy2d(ignore_label=args.ignore_label).cuda(gpu)
return criterion(pred, label)
def lr_poly(base_lr, iter, max_iter, power):
return base_lr*((1-float(iter)/max_iter)**(power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1 :
optimizer.param_groups[1]['lr'] = lr * 10
def main():
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
cudnn.enabled = True
gpu = args.gpu
# create network
model = Res_Deeplab(num_classes= args.num_classes)
model.cuda()
# load pretrained parameters
saved_state_dict = torch.load(args.restore_from)
# only copy the params that exist in current model (caffe-like)
new_params = model.state_dict().copy()
for name, param in new_params.items():
if name in saved_state_dict and param.size() == saved_state_dict[name].size():
new_params[name].copy_(saved_state_dict[name])
model.load_state_dict(new_params)
model.train()
model.cuda(args.gpu)
cudnn.benchmark = True
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
if args.dataset == 'pascal_voc':
train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)
elif args.dataset == 'pascal_context':
input_transform = transform.Compose([transform.ToTensor(),
transform.Normalize([.485, .456, .406], [.229, .224, .225])])
data_kwargs = {'transform': input_transform, 'base_size': 505, 'crop_size': 321}
#train_dataset = get_segmentation_dataset('pcontext', split='train', mode='train', **data_kwargs)
data_loader = get_loader('pascal_context')
data_path = get_data_path('pascal_context')
train_dataset = data_loader(data_path, split='train', mode='train', **data_kwargs)
elif args.dataset == 'cityscapes':
data_loader = get_loader('cityscapes')
data_path = get_data_path('cityscapes')
data_aug = Compose([RandomCrop_city((256, 512)), RandomHorizontallyFlip()])
train_dataset = data_loader( data_path, is_transform=True, augmentations=data_aug)
train_dataset_size = len(train_dataset)
print ('dataset size: ', train_dataset_size)
if args.labeled_ratio is None:
trainloader = data.DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size,
num_workers=4, pin_memory=True)
else:
partial_size = int(args.labeled_ratio * train_dataset_size)
if args.split_id is not None:
train_ids = pickle.load(open(args.split_id, 'rb'))
print('loading train ids from {}'.format(args.split_id))
else:
train_ids = np.arange(train_dataset_size)
np.random.shuffle(train_ids)
pickle.dump(train_ids, open(os.path.join(args.checkpoint_dir, 'split.pkl'), 'wb'))
train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
trainloader = data.DataLoader(train_dataset,
batch_size=args.batch_size, sampler=train_sampler, num_workers=4, pin_memory=True)
trainloader_iter = iter(trainloader)
# optimizer for segmentation network
optimizer = optim.SGD(model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum,weight_decay=args.weight_decay)
optimizer.zero_grad()
# loss/ bilinear upsampling
interp = nn.Upsample(size=(input_size[0], input_size[1]), mode='bilinear', align_corners=True)
for i_iter in range(args.num_steps):
loss_value = 0
optimizer.zero_grad()
adjust_learning_rate(optimizer, i_iter)
try:
batch_lab = next(trainloader_iter)
except:
trainloader_iter = iter(trainloader)
batch_lab = next(trainloader_iter)
images, labels, _, _, index = batch_lab
images = Variable(images).cuda(args.gpu)
pred = interp(model(images))
loss = loss_calc(pred, labels, args.gpu)
loss.backward()
loss_value += loss.item()
optimizer.step()
print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}'.format(i_iter, args.num_steps, loss_value))
if i_iter >= args.num_steps-1:
print ('save model ...')
torch.save(model.state_dict(),osp.join(args.checkpoint_dir, 'VOC_'+str(args.num_steps)+'.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter!=0:
print ('saving checkpoint ...')
torch.save(model.state_dict(),osp.join(args.checkpoint_dir, 'VOC_'+str(i_iter)+'.pth'))
end = timeit.default_timer()
print (end-start,'seconds')
if __name__ == '__main__':
main()