-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjc2.tex
4003 lines (3856 loc) · 127 KB
/
jc2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 4, Section 2 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-12
\section{Similarity}
\index{similarity|(}
%<*SimilarityMotiviation0>
We've defined two matrices \( H \) and \( \hat{H} \) to be
matrix equivalent if there are nonsingular \( P \) and \( Q \)
such that \( \hat{H}=PHQ \).
We were motivated by this diagram
showing $H$ and $\hat{H}$ both representing a map
$h$, but with respect to different
pairs of bases, $B,D$ and $\hat{B},\hat{D}$.
\begin{equation*}
\begin{CD}
V_{\wrt{B}} @>h>H> W_{\wrt{D}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
V_{\wrt{\hat{B}}} @>h>\hat{H}> W_{\wrt{\hat{D}}}
\end{CD}
\end{equation*}
%</SimilarityMotiviation0>
%<*SimilarityMotiviation1>
We now consider the special case of transformations,
where the codomain equals the domain, and we add the requirement
that the codomain's basis equals the domain's basis.
So, we are considering representations with respect to
$B,B$ and $D,D$.\index{arrow diagram}
\begin{equation*}
\begin{CD}
V_{\wrt{B}} @>t>T> V_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
V_{\wrt{D}} @>t>\hat{T}> V_{\wrt{D}}
\end{CD}
\end{equation*}
In matrix terms,
\(\rep{t}{D,D}
=\rep{\identity}{B,D}\;\rep{t}{B,B}\;\bigl(\rep{\identity}{B,D}\bigr)^{-1} \).
%</SimilarityMotiviation1>
\subsection{Definition and Examples}
\begin{example}
Consider the derivative transformation
$\map{d/dx}{\polyspace_2}{\polyspace_2}$,
and two bases for that space
$B=\sequence{x^2,x,1}$ and
$D=\sequence{1,1+x,1+x^2}$
We will compute the four sides of the arrow square.
\begin{equation*}
\begin{CD}
{\polyspace_2\,}_{\wrt{B}} @>d/dx>T> {\polyspace_2\,}_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
{\polyspace_2\,}_{\wrt{D}} @>d/dx>\hat{T}> {\polyspace_2\,}_{\wrt{D}}
\end{CD}
\end{equation*}
The top is first.
The effect of the transformation on the starting basis~$B$
\begin{equation*}
x^2\mapsunder{d/dx} 2x
\quad
x\mapsunder{d/dx} 1
\quad
1\mapsunder{d/dx} 0
\end{equation*}
represented with respect to the ending basis (also~$B$)
\begin{equation*}
\rep{2x}{B}=\colvec{0 \\ 2 \\ 0}
\qquad
\rep{1}{B}=\colvec{0 \\ 0 \\ 1}
\qquad
\rep{0}{B}=\colvec{0 \\ 0 \\ 0}
\end{equation*}
gives the representation
of the map.
\begin{equation*}
T=
\rep{d/dx}{B,B}=
\begin{mat}
0 &0 &0 \\
2 &0 &0 \\
0 &1 &0
\end{mat}
\end{equation*}
Next, the bottom.
The effect of the transformation on elements of~$D$
\begin{equation*}
1\mapsunder{d/dx} 0
\qquad
1+x\mapsunder{d/dx} 1
\qquad
1+x^2\mapsunder{d/dx} 2x
\end{equation*}
represented with respect to~$D$
gives the matrix~$\hat{T}$.
\begin{equation*}
\hat{T}=
\rep{d/dx}{D,D}=
\begin{mat}
0 &1 &-2 \\
0 &0 &2 \\
0 &0 &0
\end{mat}
\end{equation*}
Third, computing the matrix for the right-hand side involves
finding the effect of the identity map on the elements of~$B$.
Of course, the identity map does not transform them at all so
to find the matrix we represent $B$'s elements with respect
to~$D$.
\begin{equation*}
\rep{x^2}{D}=\colvec{-1 \\ 0 \\ 1}
\quad
\rep{x}{D}=\colvec{-1 \\ 1 \\ 0}
\quad
\rep{1}{D}=\colvec{1 \\ 0 \\ 0}
\end{equation*}
So the matrix for going down the right side is the concatenation of those.
\begin{equation*}
P=\rep{id}{B,D}=
\begin{mat}
-1 &-1 &1 \\
0 &1 &0 \\
1 &0 &0
\end{mat}
\end{equation*}
With that, we have two options to compute the matrix for going up on
left side.
The direct computation represents elements of~$D$ with
respect to~$B$
\begin{equation*}
\rep{1}{B}=\colvec{0 \\ 0 \\ 1}
\quad
\rep{1+x}{B}=\colvec{0 \\ 1 \\ 1}
\quad
\rep{1+x^2}{B}=\colvec{1 \\ 0 \\ 1}
\end{equation*}
and concatenates to make the matrix.
\begin{equation*}
\begin{mat}
0 &0 &1 \\
0 &1 &0 \\
1 &1 &1
\end{mat}
\end{equation*}
The other option to compute the matrix for going up on the left
is to take the inverse of the matrix~$P$ for
going down on the right.
\begin{equation*}
\begin{pmat}{ccc|ccc}
-1 &-1 &1 &1 &0 &0 \\
0 &1 &0 &0 &1 &0 \\
1 &0 &0 &0 &0 &1
\end{pmat}
% \grstep{\rho_1+\rho_3}
% \grstep{\rho_2+\rho_3}
% \grstep{-\rho_1}
% \grstep{\rho_3+\rho_1}
% \grstep{-\rho_2+\rho_1}
\grstep{}
\cdots
\grstep{}
\begin{pmat}{ccc|ccc}
1 &0 &0 &0 &0 &1 \\
0 &1 &0 &0 &1 &0 \\
0 &0 &1 &1 &1 &1
\end{pmat}
\end{equation*}
\end{example}
\begin{definition} \label{df:Similar}
%<*df:Similar>
The matrices \( T \) and $\hat{T}$ are
\definend{similar}\index{matrix!similarity}%
\index{equivalence relation!matrix similarity}\index{similar matrices}
if there is a nonsingular \( P \) such that
$
\hat{T}=PTP^{-1}
$.
%</df:Similar>
\end{definition}
\noindent Since nonsingular matrices are square,
$T$ and $\hat{T}$ must
be square and of the same size.
\nearbyexercise{exer:SimIsEquivRel} checks that
similarity is an equivalence relation.
\begin{example}
The definition does not require that we consider a map.
Calculation with these two
\begin{equation*}
P=
\begin{mat}[r]
2 &1 \\
1 &1
\end{mat}
\qquad
T=
\begin{mat}[r]
2 &-3 \\
1 &-1
\end{mat}
\end{equation*}
gives that $T$ is similar to this matrix.
\begin{equation*}
\hat{T}=
\begin{mat}[r]
12 &-19 \\
7 &-11
\end{mat}
\end{equation*}
\end{example}
\begin{example} \label{ex:OnlyZeroSimToZero}
%<*ex:OnlyZeroSimToZero>
The only matrix similar to the zero matrix is itself:~$PZP^{-1}=PZ=Z$.
The identity matrix has the same property:~$PIP^{-1}=PP^{-1}=I$.
%</ex:OnlyZeroSimToZero>
\end{example}
Matrix similarity is a special case of matrix equivalence so
if two matrices are similar then they are matrix equivalent.
What about the converse:~if they are square,
must any two matrix equivalent matrices be similar?
No; the matrix equivalence class
of an identity matrix consists of all nonsingular matrices of that size
while the prior example shows that the only member of the similarity class
of an identity matrix is itself.
Thus these two are
matrix equivalent but not similar.
\begin{equation*}
T=
\begin{mat}[r]
1 &0 \\
0 &1
\end{mat}
\qquad
S=
\begin{mat}[r]
1 &2 \\
0 &3
\end{mat}
\end{equation*}
So some matrix equivalence classes
split into two or more similarity classes\Dash similarity gives a finer
partition than does matrix equivalence.
This shows some matrix equivalence classes subdivided into
similarity classes.
\begin{center}
\includegraphics{ch5.4}
\end{center}
To understand the similarity relation we shall study the similarity classes.
We approach this question in the same way that we've studied both the
row equivalence and matrix equivalence relations, by finding
a canonical form for
representatives % \appendrefs{representatives}\spacefactor=1000 %
of the similarity classes, called Jordan form.
With this canonical form, we can decide if two matrices are similar by checking
whether they are in a class with the same representative.
We've also seen with both row equivalence and matrix equivalence that a
canonical form gives us insight into the ways in which members of
the same class are alike
(e.g., two identically-sized matrices are matrix equivalent
if and only if they have the same rank).
%(Along the way we shall see ideas that are interesting and important
%in their own right, not just as stepping stones to Jordan form.)
\begin{exercises}
\item
For
\begin{equation*}
T=
\begin{mat}[r]
1 &3 \\
-2 &-6
\end{mat}
\quad
\hat{T}=
\begin{mat}[r]
0 &0 \\
-11/2 &-5
\end{mat}
\quad
P=
\begin{mat}[r]
4 &2 \\
-3 &2
\end{mat}
\end{equation*}
check that $\hat{T}=PTP^{-1}$.
\begin{answer}
One way to proceed is left to right.
\begin{multline*}
PTP^{-1}=
\begin{mat}[r]
4 &2 \\
-3 &2
\end{mat}
\begin{mat}[r]
1 &3 \\
-2 &-6
\end{mat}
\begin{mat}[r]
2/14 &-2/14 \\
3/14 &4/14
\end{mat} \\
=
\begin{mat}[r]
0 &0 \\
-7 &-21
\end{mat}
\begin{mat}[r]
2/14 &-2/14 \\
3/14 &4/14
\end{mat}
=
\begin{mat}[r]
0 &0 \\
-11/2 &-5
\end{mat}
\end{multline*}
\end{answer}
\item
\nearbyexample{ex:OnlyZeroSimToZero} shows that the only matrix similar
to a zero matrix is itself and that
the only matrix similar to the identity
is itself.
\begin{exparts}
\partsitem Show that the $\nbyn{1}$ matrix whose single entry is $2$
is also similar only to itself.
\partsitem Is a matrix of the form $cI$ for some scalar $c$
similar only to itself?
\partsitem Is a diagonal matrix similar only to itself?
% \partsitem Is a square block partial-identity matrix similar only to
% itself?
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem Because the matrix $(2)$ is $\nbyn{1}$, the matrices
$P$ and $P^{-1}$ are also $\nbyn{1}$ and so where
$P=(p)$ the inverse is $P^{-1}=(1/p)$.
Thus $P(2)P^{-1}=(p)(2)(1/p)=(2)$.
\partsitem Yes:~recall that we can bring scalar multiples out
of a matrix \( P(cI)P^{-1}=cPIP^{-1}=cI \).
By the way, the zero and identity matrices are the special cases
$c=0$ and $c=1$.
\partsitem No, as this example shows.
\begin{equation*}
\begin{mat}[r]
1 &-2 \\
-1 &1
\end{mat}
\begin{mat}[r]
-1 &0 \\
0 &-3
\end{mat}
\begin{mat}[r]
-1 &-2 \\
-1 &-1
\end{mat}
=
\begin{mat}[r]
-5 &-4 \\
2 &1
\end{mat}
\end{equation*}
\end{exparts}
\end{answer}
\recommended \item Consider this transformation of~$\C^3$
\begin{equation*}
t(\colvec{x \\ y \\ z})=\colvec{x-z \\ z \\ 2y}
\end{equation*}
and these bases.
\begin{equation*}
B=\sequence{\colvec{1 \\ 2 \\ 3},
\colvec{0 \\ 1 \\ 0},
\colvec{0 \\ 0 \\ 1}}
\qquad
D=\sequence{\colvec{1 \\ 0 \\ 0},
\colvec{1 \\ 1 \\ 0},
\colvec{1 \\ 0 \\ 1}}
\end{equation*}
We will compute the parts of the arrow diagram to
represent the transformation using two similar matrices.
\begin{exparts}
\partsitem Draw the arrow diagram, specialized for this case.
\partsitem Compute $T=\rep{t}{B,B}$.
\partsitem Compute $\hat{T}=\rep{t}{D,D}$.
\partsitem Compute the matrices for other the two sides of the arrow
square.
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem
\begin{equation*}
\begin{CD}
\C^3_{\wrt{B}} @>t>T> \C^3_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
\C^3_{\wrt{D}} @>t>\hat{T}> \C^3_{\wrt{D}}
\end{CD}
\end{equation*}
\partsitem
For each element of the starting basis~$B$ find the effect of
the transformation
\begin{equation*}
\colvec{1 \\ 2 \\ 3}\mapsunder{t}\colvec{-2 \\ 3 \\ 4}
\qquad
\colvec{0 \\ 1 \\ 0}\mapsunder{t}\colvec{0 \\ 0 \\ 2}
\qquad
\colvec{0 \\ 0 \\ 1}\mapsunder{t}\colvec{-1 \\ 1 \\ 0}
\end{equation*}
and represented those outputs with respect to the ending basis~$B$
\begin{equation*}
\rep{\colvec{-2 \\ 3 \\ 4}}{B}=\colvec{-2 \\ 7 \\ 10}
\qquad
\rep{\colvec{0 \\ 0 \\ 2}}{B}=\colvec{0 \\ 0 \\ 2}
\qquad
\rep{\colvec{-1 \\ 1 \\ 0}}{B}=\colvec{-1 \\ 3 \\ 3}
\end{equation*}
to get the matrix.
\begin{equation*}
T=\rep{t}{B,B}=
\begin{mat}
-2 &0 &-1 \\
7 &0 &3 \\
10 &2 &3
\end{mat}
\end{equation*}
\partsitem
Find the effect of the transformation on the elements of~$D$
\begin{equation*}
\colvec{1 \\ 0 \\ 0}\mapsunder{t}\colvec{1 \\ 0 \\ 0}
\qquad
\colvec{1 \\ 1 \\ 0}\mapsunder{t}\colvec{1 \\ 0 \\ 2}
\qquad
\colvec{1 \\ 0 \\ 1}\mapsunder{t}\colvec{0 \\ 1 \\ 0}
\end{equation*}
and represented those with respect to the ending basis~$D$
\begin{equation*}
\rep{\colvec{1 \\ 0 \\ 0}}{D}=\colvec{1 \\ 0 \\ 0}
\qquad
\rep{\colvec{1 \\ 0 \\ 2}}{D}=\colvec{-1 \\ 0 \\ 2}
\qquad
\rep{\colvec{0 \\ 1 \\ 0}}{D}=\colvec{-1 \\ 1 \\ 0}
\end{equation*}
to get the matrix.
\begin{equation*}
\hat{T}=\rep{t}{D,D}=
\begin{mat}
1 &-1 &-1 \\
0 &0 &1 \\
0 &2 &0
\end{mat}
\end{equation*}
\partsitem
To go down on the right we need
$\rep{\identity}{B,D}$
so we first compute the effect of the identity map on each element
of~$D$,
which is no effect, and then represent the results with respect
to~$B$.
\begin{equation*}
\rep{\colvec{1 \\ 2 \\ 3}}{D}=\colvec{-4 \\ 2 \\ 3}
\qquad
\rep{\colvec{0 \\ 1 \\ 0}}{D}=\colvec{-1 \\ 1 \\ 0}
\qquad
\rep{\colvec{0 \\ 0 \\ 1}}{D}=\colvec{-1 \\ 0 \\ 1}
\end{equation*}
So this is~$P$.
\begin{equation*}
P=
\begin{mat}
-4 &-1 &-1 \\
2 &1 &0 \\
3 &0 &1
\end{mat}
\end{equation*}
For the other matrix~$\rep{\identity}{D,B}$ we can either find
it directly, as we just have with~$P$, or we can do the
usual calculation of a matrix inverse.
\begin{equation*}
P^{-1}=
\begin{mat}
1 &1 &1 \\
-2 &-1 &-2 \\
-3 &-3 &-2
\end{mat}
\end{equation*}
\end{exparts}
\end{answer}
\item
Consider the transformation $\map{t}{\polyspace_2}{\polyspace_2}$
described by
$x^2\mapsto x+1$, $x\mapsto x^2-1$, and $1\mapsto 3$.
\begin{exparts}
\partsitem Find $T=\rep{t}{B,B}$ where $B=\sequence{x^2,x,1}$.
\partsitem Find $\hat{T}=\rep{t}{D,D}$ where $D=\sequence{1,1+x,1+x+x^2}$.
\partsitem Find the matrix $P$ such that $\hat{T}=PTP^{-1}$.
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem Because we describe $t$ with the members of $B$,
finding the matrix representation is easy:
\begin{equation*}
\rep{t(x^2)}{B}=\colvec[r]{0 \\ 1 \\ 1}_B
\quad
\rep{t(x)}{B}=\colvec[r]{1 \\ 0 \\ -1}_B
\quad
\rep{t(1)}{B}=\colvec[r]{0 \\ 0 \\ 3}_B
\end{equation*}
gives this.
\begin{equation*}
\rep{t}{B,B}
\begin{mat}[r]
0 &1 &0 \\
1 &0 &0 \\
1 &-1 &3
\end{mat}
\end{equation*}
\partsitem We will find $t(1)$, $t(1+x)$, and $t(1+x+x^2$,
to find how each is represented with respect to $D$.
We are given that $t(1)=3$, and the other two are easy to see:
$t(1+x)=x^2+2$ and $t(1+x+x^2)=x^2+x+3$.
By eye, we get the representation of each vector
\begin{equation*}
\rep{t(1)}{D}=\colvec[r]{3 \\ 0 \\ 0}_D
\quad
\rep{t(1+x)}{D}=\colvec[r]{2 \\ -1 \\ 1}_D
\quad
\rep{t(1+x+x^2)}{D}=\colvec[r]{2 \\ 0 \\ 1}_D
\end{equation*}
and thus the representation of the map.
\begin{equation*}
\rep{t}{D,D}
=
\begin{mat}[r]
3 &2 &2 \\
0 &-1 &0 \\
0 &1 &1
\end{mat}
\end{equation*}
\partsitem The diagram
\begin{equation*}
\begin{CD}
V_{\wrt{B}} @>t>T> V_{\wrt{B}} \\
@V\scriptstyle\identity VPV @V\scriptstyle\identity VPV \\
V_{\wrt{D}} @>t>\hat{T}> V_{\wrt{D}}
\end{CD}
\end{equation*}
shows that these are $P=\rep{\identity}{B,D}$ and
$P^{-1}=\rep{\identity}{D,B}$.
\begin{equation*}
P=
\begin{mat}[r]
0 &-1 &1 \\
-1 &1 &0 \\
1 &0 &0
\end{mat}
\qquad
P^{-1}=
\begin{mat}[r]
0 &0 &1 \\
0 &1 &1 \\
1 &1 &1
\end{mat}
\end{equation*}
\end{exparts}
\end{answer}
\item
Let $T$ represent $\map{t}{\C^2}{\C^2}$ with respect to $B,B$.
\begin{equation*}
T=
\begin{mat}
1 &-1 \\
2 &1
\end{mat}
\qquad
B=\sequence{\colvec{1 \\ 0},\colvec{1 \\ 1}},\hspace{0.7em}
D=\sequence{\colvec{2 \\ 0},\colvec{0 \\ -2}}
\end{equation*}
We will convert to the matrix representing~$t$ with resepct to $D,D$.
\begin{exparts}
\partsitem Draw the arrow diagram.
\partsitem Give the matrix that represents the left and right
sides of that diagram, in the
direction that we traverse the diagram to make the conversion.
\partsitem Find $\rep{t}{D,D}$.
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem
\begin{equation*}
\begin{CD}
\C^2_{\wrt{B}} @>t>T> \C^2_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
\C^2_{\wrt{D}} @>t>\hat{T}> \C^2_{\wrt{D}}
\end{CD}
\end{equation*}
\partsitem
For the right side we find the effect of the identity map,
which is no effect,
\begin{equation*}
\colvec{1 \\ 0}\mapsunder{\identity}\colvec{1 \\ 0}
\qquad
\colvec{1 \\ 1}\mapsunder{\identity}\colvec{1 \\ 1}
\end{equation*}
and represent those with respect to~$D$
\begin{equation*}
\rep{\colvec{1 \\ 0}}{D}=\colvec{1/2 \\ 0}
\qquad
\rep{\colvec{1 \\ 1}}{D}=\colvec{1/2 \\ -1/2}
\end{equation*}
so we have this.
\begin{equation*}
P=\rep{\identity}{B,D}=
\begin{mat}
1/2 &1/2 \\
0 &-1/2
\end{mat}
\end{equation*}
For the matrix on the left we can either compute it directly,
as in the
prior paragraph, or we can take the inverse.
\begin{equation*}
P^{-1}=\rep{\identity}{D,B}=
\frac{1}{(-1/4)}\cdot
\begin{mat}
-1/2 &-1/2 \\
0 &1/2
\end{mat}
=
\begin{mat}
2 &2 \\
0 &-2
\end{mat}
\end{equation*}
\partsitem
As with the prior item we can either compute it directly from
the definition
or compute it using matrix operations.
\begin{equation*}
PTP^{-1}=
\begin{mat}
2 &2 \\
0 &-2
\end{mat}
\begin{mat}
1 &-1 \\
2 &1
\end{mat}
\begin{mat}
2 &2 \\
0 &-2
\end{mat}
=
\begin{mat}
3 &3 \\
-2 &-1
\end{mat}
\end{equation*}
\end{exparts}
\end{answer}
\recommended \item
Exhibit an nontrivial similarity relationship by letting
\( \map{t}{\C^2}{\C^2} \) act in this way,
\begin{equation*}
\colvec[r]{1 \\ 2}\mapsto\colvec[r]{3 \\ 0}
\qquad
\colvec[r]{-1 \\ 1}\mapsto\colvec[r]{-1 \\ 2}
\end{equation*}
picking two bases~$B,D$,
and representing \( t \) with respect to them,
\( \hat{T}=\rep{t}{B,B} \) and \( T=\rep{t}{D,D} \).
Then compute
the \( P \) and \( P^{-1} \) to change bases from \( B \) to \( D \) and
back again.
\begin{answer}
One possible choice of the bases is
\begin{equation*}
B=\sequence{\colvec[r]{1 \\ 2},\colvec[r]{-1 \\ 1}}
\qquad
D=\stdbasis_2=\sequence{\colvec[r]{1 \\ 0},\colvec[r]{0 \\ 1}}
\end{equation*}
(this $B$ comes from the map description).
To find the matrix $\hat{T}=\rep{t}{B,B}$, solve the relations
\begin{equation*}
c_1\colvec[r]{1 \\ 2}+c_2\colvec[r]{-1 \\ 1}=\colvec[r]{3 \\ 0}
\qquad
\hat{c}_1\colvec[r]{1 \\ 2}+\hat{c}_2\colvec[r]{-1 \\ 1}=\colvec[r]{-1 \\ 2}
\end{equation*}
to get \( c_1=1 \), \( c_2=-2 \), \( \hat{c}_1=1/3 \) and
\( \hat{c}_2=4/3 \).
\begin{equation*}
\rep{t}{B,B}=
\begin{mat}[r]
1 &1/3 \\
-2 &4/3
\end{mat}
\end{equation*}
Finding \( \rep{t}{D,D} \) involves a bit more computation.
We first find \( t(\vec{e}_1) \).
The relation
\begin{equation*}
c_1\colvec[r]{1 \\ 2}+c_2\colvec[r]{-1 \\ 1}=\colvec[r]{1 \\ 0}
\end{equation*}
gives \( c_1=1/3 \) and \( c_2=-2/3 \), and so
\begin{equation*}
\rep{\vec{e}_1}{B}=\colvec[r]{1/3 \\ -2/3}_B
\end{equation*}
making
\begin{equation*}
\rep{t(\vec{e}_1)}{B}=
\begin{mat}[r]
1 &1/3 \\
-2 &4/3
\end{mat}_{B,B}
\colvec[r]{1/3 \\ -2/3}_B
=
\colvec[r]{1/9 \\ -14/9}_B
\end{equation*}
and hence $t$ acts on the first basis vector $\vec{e}_1$ in this way.
\begin{equation*}
t(\vec{e}_1)
=(1/9)\cdot\colvec[r]{1 \\ 2}-(14/9)\cdot\colvec[r]{-1 \\ 1}
=\colvec[r]{5/3 \\ -4/3}
\end{equation*}
The computation for \( t(\vec{e}_2) \) is similar.
The relation
\begin{equation*}
c_1\colvec[r]{1 \\ 2}+c_2\colvec[r]{-1 \\ 1}=\colvec[r]{0 \\ 1}
\end{equation*}
gives \( c_1=1/3 \) and \( c_2=1/3 \), so
\begin{equation*}
\rep{\vec{e}_1}{B}=\colvec[r]{1/3 \\ 1/3}_B
\end{equation*}
making
\begin{equation*}
\rep{t(\vec{e}_1)}{B}=
\begin{mat}[r]
1 &1/3 \\
-2 &4/3
\end{mat}_{B,B}
\colvec[r]{1/3 \\ 1/3}_B
=
\colvec[r]{4/9 \\ -2/9}_B
\end{equation*}
and hence $t$ acts on the second basis vector $\vec{e}_2$ in this way.
\begin{equation*}
t(\vec{e}_2)
=(4/9)\cdot\colvec[r]{1 \\ 2}-(2/9)\cdot\colvec[r]{-1 \\ 1}
=\colvec[r]{2/3 \\ 2/3}
\end{equation*}
Therefore
\begin{equation*}
\rep{t}{D,D}=
\begin{mat}[r]
5/3 &2/3 \\
-4/3 &2/3
\end{mat}
\end{equation*}
and so this matrix.
\begin{equation*}
P=\rep{\identity}{B,D}
=\begin{mat}[r]
1 &-1 \\
2 &1
\end{mat}
\end{equation*}
and this one change the bases.
\begin{equation*}
P^{-1}=\bigl(\rep{\identity}{B,D}\bigr)^{-1}
=\begin{mat}[r]
1 &-1 \\
2 &1
\end{mat}^{-1}
=
\begin{mat}[r]
1/3 &1/3 \\
-2/3 &1/3
\end{mat}
\end{equation*}
The check of these computations is routine.
\begin{equation*}
\begin{mat}[r]
1 &-1 \\
2 &1
\end{mat}
\begin{mat}[r]
1 &1/3 \\
-2 &4/3
\end{mat}
\begin{mat}[r]
1/3 &1/3 \\
-2/3 &1/3
\end{mat}
=
\begin{mat}[r]
5/3 &2/3 \\
-4/3 &2/3
\end{mat}
\end{equation*}
\end{answer}
\recommended \item
Show that these matrices are not similar.
\begin{equation*}
\begin{mat}[r]
1 &0 &4 \\
1 &1 &3 \\
2 &1 &7
\end{mat}
\qquad
\begin{mat}[r]
1 &0 &1 \\
0 &1 &1 \\
3 &1 &2
\end{mat}
\end{equation*}
\begin{answer}
Gauss's Method shows that
the first matrix represents maps of rank two while the second
matrix represents maps of rank three.
\end{answer}
\item
Explain \nearbyexample{ex:OnlyZeroSimToZero} in terms of maps.
\begin{answer}
The only representation of a zero map is a zero matrix,
no matter what the pair of bases $\rep{z}{B,D}=Z$,
and so in particular for any single basis $B$ we have $\rep{z}{B,B}=Z$.
The case of the identity is slightly different:~the
only representation of the identity map, with respect to any $B,B$,
is the identity $\rep{\identity}{B,B}=I$.
(\textit{Remark:}~of course, we have seen examples where $B\neq D$ and
$\rep{\identity}{B,D}\neq I$\Dash in fact, we have seen that any
nonsingular matrix is a representation of the identity map with
respect to some $B,D$.)
\end{answer}
\recommended \item
\cite{Halmos}
Are there two matrices \( A \) and \( B \) that are
similar while \( A^2 \) and \( B^2 \) are not similar?
\begin{answer}
No.
If \( A=PBP^{-1} \) then \( A^2=(PBP^{-1})(PBP^{-1})=PB^2P^{-1} \).
\end{answer}
\recommended \item
Prove that if two matrices are similar and one is invertible then
so is the other.
\begin{answer}
Matrix similarity is a special case of matrix equivalence
(if matrices are similar then they are matrix equivalent)
and matrix equivalence preserves nonsingularity.
\end{answer}
\recommended \item \label{exer:SimIsEquivRel}
Show that similarity is an equivalence relation.
(The definition given earlier already reflects this, so
instead start here with the definition that $\hat{T}$ is similar to
$T$ if $\hat{T}=PTP^{-1}$.)
\begin{answer}
A matrix is similar to itself; take \( P \) to be the identity
matrix:~$P=IPI^{-1}=IPI$.
If \( \hat{T} \) is similar to \( T \) then \( \hat{T}=PTP^{-1} \)
and so \( P^{-1}\hat{T}P=T \).
Rewrite \( T=(P^{-1})\hat{T}(P^{-1})^{-1} \) to conclude that
$T$ is similar to \( \hat{T} \).
For transitivity,
if \( T \) is similar to \( S \) and \( S \) is similar to \( U \)
then \( T=PSP^{-1} \) and \( S=QUQ^{-1} \).
Then \( T=PQUQ^{-1}P^{-1}=(PQ)U(PQ)^{-1} \), showing that \( T \)
is similar to \( U \).
\end{answer}
\item
Consider a
matrix representing, with respect to some $B,B$,
reflection across the \( x \)-axis in \( \Re^2 \).
Consider also
a matrix representing, with respect to some $D,D$,
reflection across the \( y \)-axis.
Must they be similar?
\begin{answer}
Let $f_x$ and $f_y$ be the reflection maps (sometimes called `flip's).
For any bases
\( B \) and \( D \), the matrices \( \rep{f_x}{B,B} \) and
\( \rep{f_y}{D,D} \) are similar.
First note that
\begin{equation*}
S=\rep{f_x}{\stdbasis_2,\stdbasis_2}=
\begin{mat}[r]
1 &0 \\
0 &-1
\end{mat}
\qquad
T=\rep{f_y}{\stdbasis_2,\stdbasis_2}=
\begin{mat}[r]
-1 &0 \\
0 &1
\end{mat}
\end{equation*}
are similar because the second matrix is the representation of $f_x$
with respect to the basis \( A=\sequence{\vec{e}_2,\vec{e}_1} \):
\begin{equation*}
\begin{mat}[r]
1 &0 \\
0 &-1
\end{mat}
=
P
\begin{mat}[r]
-1 &0 \\
0 &1
\end{mat}
P^{-1}
\end{equation*}
where $P=\rep{\identity}{A,\stdbasis_2}$.
\begin{equation*}
\begin{CD}
\Re^2_{\wrt{A}}
@>f_x>T>
V\Re^2_{\wrt{A}} \\
@V\scriptstyle\identity VPV
@V\scriptstyle\identity VPV \\
\Re^2_{\wrt{\stdbasis_2}}
@>f_x>S>
\Re^2_{\wrt{\stdbasis_2}}
\end{CD}
\end{equation*}
Now the conclusion follows from the transitivity part of
\nearbyexercise{exer:SimIsEquivRel}.
We can also finish without relying on that exercise.
Write
$\rep{f_x}{B,B}=QTQ^{-1}=Q\rep{f_x}{\stdbasis_2,\stdbasis_2}Q^{-1}$
and
$\rep{f_y}{D,D}=RSR^{-1}=R\rep{f_y}{\stdbasis_2,\stdbasis_2}R^{-1}$.
By the equation in the first paragraph,
the first of these two is
$\rep{f_x}{B,B}=QP\rep{f_y}{\stdbasis_2,\stdbasis_2}P^{-1}Q^{-1}$.
Rewriting the second of these two as
$R^{-1}\cdot\rep{f_y}{D,D}\cdot R=\rep{f_y}{\stdbasis_2,\stdbasis_2}$
and substituting gives the desired relationship
\begin{multline*}
\rep{f_x}{B,B}
=QP\rep{f_y}{\stdbasis_2,\stdbasis_2}P^{-1}Q^{-1} \\
=QPR^{-1}\cdot\rep{f_y}{D,D}\cdot RP^{-1}Q^{-1}
=(QPR^{-1})\cdot\rep{f_y}{D,D}\cdot (QPR^{-1})^{-1}
\end{multline*}
Thus the matrices \( \rep{f_x}{B,B} \) and \( \rep{f_y}{D,D} \) are
similar.
\end{answer}
\item
Prove that similarity preserves determinants and rank.
Does the converse hold?
\begin{answer}
We must show that if two matrices are similar then they have the same
determinant and the same rank.
Both determinant and rank are properties of matrices that
are preserved by matrix equivalence.
They are therefore preserved by similarity (which is a
special case of matrix equivalence:~if two matrices
are similar then they are matrix equivalent).
To prove the statement without quoting the results about
matrix equivalence, note first that
rank is a property of the map (it is the dimension of the range space)
and since we've shown that
the rank of a map is the rank of a representation,
it must be the same for all representations.
As for determinants,
\( \deter{PSP^{-1}}=\deter{P}\cdot\deter{S}\cdot\deter{P^{-1}}
=\deter{P}\cdot\deter{S}\cdot\deter{P}^{-1}=\deter{S} \).
The converse of the statement does not hold;
for instance,
there are matrices with the same determinant that are not similar.
To check this, consider a nonzero matrix with a
determinant of zero.
It is not similar to the zero matrix, the zero matrix is similar
only to itself, but they have they same determinant.
The argument for rank is much the same.
\end{answer}
\item
Is there a matrix equivalence class with only one matrix similarity
class inside?
One with infinitely many similarity classes?
\begin{answer}
The matrix equivalence class containing all \( \nbyn{n} \) rank
zero matrices contains only a single matrix, the zero matrix.
Therefore it has as a subset only one similarity class.
In contrast, the matrix equivalence class of \( \nbyn{1} \) matrices
of rank one consists of those