Skip to content

Commit 2471af1

Browse files
committed
v1.8.0
1 parent 06f4174 commit 2471af1

File tree

4 files changed

+52
-27
lines changed

4 files changed

+52
-27
lines changed

CHANGELOG.md

Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,24 @@
1+
# 2021-02-04 [ 1.8.0 ]:
2+
--------------------------
3+
* bugfixes
4+
- Fixed chunk size for `scrump` and `scraamp` when time series are short
5+
* features
6+
- Added `maamp` and `maamped` functions
7+
- Added `scraamp` function
8+
- Added a new `core.non_normalized` decorator that re-routes normalized functions to non-normalized functions
9+
- All z-normalized functions now accept a `normalize` parameter
10+
* tasks
11+
- Renamed `main` branch
12+
- Removed Azure pipelines badge
13+
- Refactored `subspace`
14+
- Refactored non-normalized functions
15+
- Added non-normalized support to `floss`
16+
* documentation
17+
- Updated README with `if __name__ == "__main__"` for Dask and Jupyter notebooks
18+
- Removed all `aamp` references as `normalize=False` should be used instead
19+
- Fixed function docstrings and typos in API docs
20+
21+
122
# 2021-01-20 [ 1.7.2 ]:
223
--------------------------
324
* bugfixes
@@ -7,7 +28,7 @@
728
* tasks
829
- Added CI for minimum version dependencies
930
* documentation
10-
- Updated README to convery NEP 29
31+
- Updated README to conver NEP 29
1132

1233

1334
# 2021-01-19 [ 1.7.1 ]:

README.rst

Lines changed: 28 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -74,10 +74,11 @@ Typical usage (1-dimensional time series data) with `STUMP <https://stumpy.readt
7474
import stumpy
7575
import numpy as np
7676
77-
your_time_series = np.random.rand(10000)
78-
window_size = 50 # Approximately, how many data points might be found in a pattern
77+
if __name__ == "__main__":
78+
your_time_series = np.random.rand(10000)
79+
window_size = 50 # Approximately, how many data points might be found in a pattern
7980
80-
matrix_profile = stumpy.stump(your_time_series, m=window_size)
81+
matrix_profile = stumpy.stump(your_time_series, m=window_size)
8182
8283
Distributed usage for 1-dimensional time series data with Dask Distributed via `STUMPED <https://stumpy.readthedocs.io/en/latest/api.html#stumpy.stumped>`__:
8384

@@ -117,10 +118,11 @@ Multi-dimensional time series data with `MSTUMP <https://stumpy.readthedocs.io/e
117118
import stumpy
118119
import numpy as np
119120
120-
your_time_series = np.random.rand(3, 1000) # Each row represents data from a different dimension while each column represents data from the same dimension
121-
window_size = 50 # Approximately, how many data points might be found in a pattern
121+
if __name__ == "__main__":
122+
your_time_series = np.random.rand(3, 1000) # Each row represents data from a different dimension while each column represents data from the same dimension
123+
window_size = 50 # Approximately, how many data points might be found in a pattern
122124
123-
matrix_profile, matrix_profile_indices = stumpy.mstump(your_time_series, m=window_size)
125+
matrix_profile, matrix_profile_indices = stumpy.mstump(your_time_series, m=window_size)
124126
125127
Distributed multi-dimensional time series data analysis with Dask Distributed `MSTUMPED <https://stumpy.readthedocs.io/en/latest/api.html#stumpy.mstumped>`__:
126128

@@ -145,18 +147,19 @@ Time Series Chains with `Anchored Time Series Chains (ATSC) <https://stumpy.read
145147
import stumpy
146148
import numpy as np
147149
148-
your_time_series = np.random.rand(10000)
149-
window_size = 50 # Approximately, how many data points might be found in a pattern
150-
151-
matrix_profile = stumpy.stump(your_time_series, m=window_size)
150+
if __name__ == "__main__":
151+
your_time_series = np.random.rand(10000)
152+
window_size = 50 # Approximately, how many data points might be found in a pattern
153+
154+
matrix_profile = stumpy.stump(your_time_series, m=window_size)
152155
153-
left_matrix_profile_index = matrix_profile[:, 2]
154-
right_matrix_profile_index = matrix_profile[:, 3]
155-
idx = 10 # Subsequence index for which to retrieve the anchored time series chain for
156+
left_matrix_profile_index = matrix_profile[:, 2]
157+
right_matrix_profile_index = matrix_profile[:, 3]
158+
idx = 10 # Subsequence index for which to retrieve the anchored time series chain for
156159
157-
anchored_chain = stumpy.atsc(left_matrix_profile_index, right_matrix_profile_index, idx)
160+
anchored_chain = stumpy.atsc(left_matrix_profile_index, right_matrix_profile_index, idx)
158161
159-
all_chain_set, longest_unanchored_chain = stumpy.allc(left_matrix_profile_index, right_matrix_profile_index)
162+
all_chain_set, longest_unanchored_chain = stumpy.allc(left_matrix_profile_index, right_matrix_profile_index)
160163
161164
Semantic Segmentation with `Fast Low-cost Unipotent Semantic Segmentation (FLUSS) <https://stumpy.readthedocs.io/en/latest/api.html#stumpy.fluss>`__:
162165

@@ -165,17 +168,18 @@ Semantic Segmentation with `Fast Low-cost Unipotent Semantic Segmentation (FLUSS
165168
import stumpy
166169
import numpy as np
167170
168-
your_time_series = np.random.rand(10000)
169-
window_size = 50 # Approximately, how many data points might be found in a pattern
171+
if __name__ == "__main__":
172+
your_time_series = np.random.rand(10000)
173+
window_size = 50 # Approximately, how many data points might be found in a pattern
170174
171-
matrix_profile = stumpy.stump(your_time_series, m=window_size)
175+
matrix_profile = stumpy.stump(your_time_series, m=window_size)
172176
173-
subseq_len = 50
174-
correct_arc_curve, regime_locations = stumpy.fluss(matrix_profile[:, 1],
175-
L=subseq_len,
176-
n_regimes=2,
177-
excl_factor=1
178-
)
177+
subseq_len = 50
178+
correct_arc_curve, regime_locations = stumpy.fluss(matrix_profile[:, 1],
179+
L=subseq_len,
180+
n_regimes=2,
181+
excl_factor=1
182+
)
179183
180184
------------
181185
Dependencies

pypi.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
# a) Find the minimum Python and NumPy version you want to support: https://numpy.org/neps/nep-0029-deprecation_policy.html#support-table
88
# b) Then find the SciPy version that has a "Python" version and "Minimum NumPy version" that is supported: https://docs.scipy.org/doc/scipy/reference/toolchain.html#numpy
99
# c) Check Numba release notes for mimumum Python and NumPy versions supported https://numba.pydata.org/numba-doc/dev/release-notes.html
10-
# 5. Bumpy minimum dependencies
10+
# 5. Bump minimum dependencies
1111
# a) setup.py
1212
# b) requirements.txt
1313
# d) environment.yml

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ def get_extras_require():
2828

2929
configuration = {
3030
"name": "stumpy",
31-
"version": "1.7.2",
31+
"version": "1.8.0",
3232
"python_requires=": ">=3.6",
3333
"author": "Sean M. Law",
3434
"author_email": "seanmylaw@gmail.com",

0 commit comments

Comments
 (0)