-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProductofArrayExceptSelf.cpp
77 lines (69 loc) · 2.03 KB
/
ProductofArrayExceptSelf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
//Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
//
//Solve it without division and in O(n).
//
//For example, given [1,2,3,4], return [24,12,8,6].
//
//Follow up:
//Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
//O(n) time and O(1) space C++ solution with explanation
//First, consider O(n) time and O(n) space solution.
//
//class Solution {
//public:
// vector<int> productExceptSelf(vector<int>& nums) {
// int n=nums.size();
// vector<int> fromBegin(n);
// fromBegin[0]=1;
// vector<int> fromLast(n);
// fromLast[0]=1;
//
// for(int i=1;i<n;i++){
// fromBegin[i]=fromBegin[i-1]*nums[i-1];
// fromLast[i]=fromLast[i-1]*nums[n-i];
// }
//
// vector<int> res(n);
// for(int i=0;i<n;i++){
// res[i]=fromBegin[i]*fromLast[n-1-i];
// }
// return res;
// }
//};
//We just need to change the two vectors to two integers and note that we should do multiplying operations for two related elements of the results vector in each loop.
//
//class Solution {
//public:
// vector<int> productExceptSelf(vector<int>& nums) {
// int n=nums.size();
// int fromBegin=1;
// int fromLast=1;
// vector<int> res(n,1);
//
// for(int i=0;i<n;i++){
// res[i]*=fromBegin;
// fromBegin*=nums[i];
// res[n-1-i]*=fromLast;
// fromLast*=nums[n-1-i];
// }
// return res;
// }
//};
#include<vector>
using namespace std;
class ProductofArrayExceptSelf {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int start = 1, end = 1;
int n = nums.size();
vector<int> res(n, 1);
for (size_t i = 0; i<n; ++i)
{
res[i] *= start;
start *= nums[i];
res[n - 1 - i] *= end;
end *= nums[n - 1 - i];
}
return res;
}
};