-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartitionEqualSubsetSum.cpp
54 lines (50 loc) · 1.23 KB
/
PartitionEqualSubsetSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
//Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
//
//Note:
//Each of the array element will not exceed 100.
//The array size will not exceed 200.
//Example 1:
//
//Input: [1, 5, 11, 5]
//
//Output: true
//
//Explanation: The array can be partitioned as [1, 5, 5] and [11].
//Example 2:
//
//Input: [1, 2, 3, 5]
//
//Output: false
//
//Explanation: The array cannot be partitioned into equal sum subsets.
#include<vector>
#include<algorithm>
using namespace std;
class PartitionEqualSubsetSum {
public:
bool canPartition(vector<int>& nums) {
int n = nums.size();
int s = 0;
for (int i : nums) s += i;
if (s % 2 != 0) return false;
int t = s / 2;
vector<vector<int>> m(n + 1, vector<int>(t + 1, -1));
return help(nums, 0, t, m) == 1;
}
int help(vector<int>& nums, int start, int t, vector<vector<int>>& m){
if (t<0 || start>nums.size()) return 0;
if (t == 0){
m[start][t] = 1;
return 1;
}
if (m[start][t] != -1) return m[start][t];
for (int i = start; i<nums.size(); ++i){
if (help(nums, i + 1, t - nums[i], m) == 1){
m[start][t] = 1;
return 1;
}
}
m[start][t] = 0;
return 0;
}
};