-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK-diffPairsinanArray.cpp
74 lines (64 loc) · 1.78 KB
/
K-diffPairsinanArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
//Given an array of integers and an integer k, you need to find the number of unique k-diff pairs in the array. Here a k-diff pair is defined as an integer pair (i, j), where i and j are both numbers in the array and their absolute difference is k.
//
//Example 1:
//Input: [3, 1, 4, 1, 5], k = 2
//Output: 2
//Explanation: There are two 2-diff pairs in the array, (1, 3) and (3, 5).
//Although we have two 1s in the input, we should only return the number of unique pairs.
//Example 2:
//Input:[1, 2, 3, 4, 5], k = 1
//Output: 4
//Explanation: There are four 1-diff pairs in the array, (1, 2), (2, 3), (3, 4) and (4, 5).
//Example 3:
//Input: [1, 3, 1, 5, 4], k = 0
//Output: 1
//Explanation: There is one 0-diff pair in the array, (1, 1).
//Note:
//The pairs (i, j) and (j, i) count as the same pair.
//The length of the array won't exceed 10,000.
//All the integers in the given input belong to the range: [-1e7, 1e7].
#include<vector>
#include<unordered_set>
#include<unordered_map>
#include<algorithm>
using namespace std;
class KdiffPairsinanArray {
public:
int findPairs(vector<int>& nums, int k) {
if (k < 0) {
return 0;
}
unordered_set<int> starters;
unordered_map<int, int> indices;
for (int i = 0; i < nums.size(); i++) {
if (indices.count(nums[i] - k)) {
starters.insert(nums[i] - k);
}
if (indices.count(nums[i] + k)) {
starters.insert(nums[i]);
}
indices[nums[i]] += 1;
}
return starters.size();
/*int n = nums.size();
sort(nums.begin(), nums.end());
int i = 0;
int res = 0;
while (i<n){
int j = i + 1;
while (j<n){
if (nums[j] - nums[i] == k){
++res;
}
else if (nums[j] - nums[i]>k){
break;
}
while (j<n - 1 && nums[j] == nums[j + 1]) ++j;
++j;
}
while (i<n - 1 && nums[i] == nums[i + 1]) ++i;
++i;
}
return res;*/
}
};