-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
174 lines (155 loc) · 5.95 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
from typing import Tuple
from enum import Enum, auto
from util import softclamp5
import tensorflow as tf
from tensorflow.keras import layers, activations, Sequential
from tensorflow_addons.layers import SpectralNormalization
from dataclasses import dataclass
@dataclass
class DistributionParams:
enc_mu: float
enc_sigma: float
dec_mu: float
dec_sigma: float
class Sampler(tf.keras.Model):
def __init__(
self,
n_latent_scales,
n_groups_per_scale,
n_latent_per_group,
scale_factor,
**kwargs
) -> None:
super().__init__(**kwargs)
# Initialize sampler
self.enc_sampler = []
self.dec_sampler = []
self.n_latent_scales = n_latent_scales
self.n_groups_per_scale = n_groups_per_scale
self.n_latent_per_group = n_latent_per_group
for scale in range(self.n_latent_scales):
n_groups = self.n_groups_per_scale[scale]
for group in range(n_groups):
self.enc_sampler.append(
# NVLabs use padding 1 here?
SpectralNormalization(
layers.Conv2D(
2 * self.n_latent_per_group,
kernel_size=(3, 3),
padding="same",
)
)
)
if scale == 0 and group == 0:
# Dummy value to maintain indexing
self.dec_sampler.append(None)
else:
sampler = Sequential()
sampler.add(layers.ELU())
# NVLabs use padding 0 here?
sampler.add(
SpectralNormalization(
layers.Conv2D(
2 * self.n_latent_per_group, kernel_size=(1, 1),
)
)
)
self.dec_sampler.append(sampler)
def sample(self, mu, sigma):
# reparametrization trick
z = mu + tf.random.normal(shape=tf.shape(mu), dtype=tf.float32) * sigma
return z
def get_params(self, sampler, z_idx, prior):
params = sampler[z_idx](prior)
mu, log_sigma = tf.split(params, 2, axis=-1)
mu, log_sigma = [tf.squeeze(p) for p in (mu, log_sigma)]
return mu, log_sigma
def call(self, prior, z_idx, enc_prior=None) -> Tuple[tf.Tensor, DistributionParams]:
# Get encoder offsets
if enc_prior is None:
enc_prior = prior
enc_mu_offset, enc_log_sigma_offset = self.get_params(
self.enc_sampler, z_idx, enc_prior
)
if z_idx == 0:
# Prior is standard normal distribution
enc_mu = softclamp5(enc_mu_offset)
enc_sigma = tf.math.exp(softclamp5(enc_log_sigma_offset)) + 1e-2
z = self.sample(enc_mu, enc_sigma)
params = DistributionParams(
enc_mu, enc_sigma, tf.zeros_like(enc_mu), tf.ones_like(enc_sigma),
)
return z, params
# Get decoder parameters
raw_dec_mu, raw_dec_log_sigma = self.get_params(self.dec_sampler, z_idx, prior)
dec_mu = softclamp5(raw_dec_mu)
dec_sigma = tf.math.exp(softclamp5(raw_dec_log_sigma)) + 1e-2
enc_mu = softclamp5(enc_mu_offset + raw_dec_mu)
enc_sigma = (
tf.math.exp(softclamp5(raw_dec_log_sigma + enc_log_sigma_offset)) + 1e-2
)
params = DistributionParams(enc_mu, enc_sigma, dec_mu, dec_sigma)
z = self.sample(enc_mu, enc_sigma)
return z, params
class RescaleType(Enum):
UP = auto()
DOWN = auto()
class SqueezeExcitation(tf.keras.Model):
"""Squeeze and Excitation block as defined by Hu, et al. (2019)
See Also
========
Source paper https://arxiv.org/pdf/1709.01507.pdf
"""
def __init__(self, ratio=16, **kwargs) -> None:
super().__init__(**kwargs)
self.ratio = ratio
def build(self, input_shape):
batch_size, h, w, c = input_shape
self.gap = layers.GlobalAveragePooling2D(data_format="channels_last")
num_hidden = max(c / self.ratio, 4)
self.dense1 = layers.Dense(units=num_hidden)
self.dense2 = layers.Dense(units=c)
def call(self, inputs):
# x = tf.math.reduce_mean(x, axis=[1, 2])
x = self.gap(inputs)
x = self.dense1(x)
x = activations.relu(x)
x = self.dense2(x)
x = activations.sigmoid(x)
# x is currently shaped (None, n_channels). We need to expand this for it to broadcast
# batch_size, n_channels = x.get_shape().as_list()
x = tf.expand_dims(x, 1)
x = tf.expand_dims(x, 2)
# target_shape = tf.TensorShape([-1, 1, 1, n_channels])
# x = tf.reshape(x, target_shape)
return x * inputs
class Rescaler(tf.keras.Model):
def __init__(self, n_channels, scale_factor, rescale_type, **kwargs) -> None:
super().__init__(**kwargs)
self.bn = layers.BatchNormalization(momentum=0.05, epsilon=1e-5)
self.mode = rescale_type
self.factor = scale_factor
if rescale_type == RescaleType.UP:
self.conv = SpectralNormalization(
layers.Conv2D(n_channels, (3, 3), strides=(1, 1), padding="same")
)
elif rescale_type == RescaleType.DOWN:
self.conv = SpectralNormalization(
layers.Conv2D(
n_channels,
(3, 3),
strides=(self.factor, self.factor),
padding="same",
)
)
def call(self, input):
x = self.bn(input)
x = activations.swish(x)
if self.mode == RescaleType.UP:
_, height, width, _ = x.get_shape()
x = tf.image.resize(
x, size=(self.factor * height, self.factor * width), method="nearest"
)
x = self.conv(x)
return x