
MEEP documentation » C++ Interface » Mode expansion

Eigenmode decomposition of arbitrary
�eld con�gurations
Eigenmode decomposition exploits Meep's interconnectivity with the MPB mode solver to

express an arbitrary time-harmonic �eld con�guration as a superposition of the normal

harmonic modes of your structure.

TABLE OF CONTENTS

Eigenmode decomposition of arbitrary �eld con�gurations
Theoretical background1
Main function prototype
Sample application: tapering between waveguides

First calculation: 2D geometry
User-de�ned material function
Visualizing eigenmode pro�les
Adding an eigenmode source and timestepping
Visualizing DFT �elds
Making movies
Extracting mode-expansion coef�cients
Intra-modal scattering losses vs. taper length and smoothness

Related computational routines
Routine for computing MPB eigenmodes (in mpb.cpp)
Routines for working with MPB eigenmodes (in mpb.cpp)
Routines for exporting frequency-domain �elds (in dft.cpp)
Routines for computing overlap integrals (in dft.cpp)

Under the hood: How mode expansion works

Theoretical background

Consider a waveguide structure of in�nite extent in the direction with constant cross

section in the transverse directions. For any given angular frequency we may

solve the time-harmonic Maxwell equations to obtain the normal modes of the structure---an

in�nite set of vector-valued functions of the transverse coordinates , with

1

x

[= (y, z)]ρ ⃗ ω

{ (), ()}E±
n ρ ⃗ H±

n ρ ⃗

http://127.0.0.1:8000/
https://mpb.readthedocs.io/en/latest/

associated propagation constants , that furnish a complete expansion basis for time-

harmonic electromagnetic �elds at frequency . That is, given any arbitrary frequency- �eld

con�guration of the form

we have the exact expansions

where (as discussed further below) the expansion coef�cients may be extracted from

knowledge of the time-harmonic �elds on any cross-sectional surface transverse to

the waveguide.

The idea of mode expansion in Meep is to compute the coef�cients above for any

arbitrary time-harmonic �eld distribution resulting from a Meep calculation. In calculations of

this sort,

the �elds on the RHS of equations (1a,b) above will be frequency-domain �elds

stored in a dft_flux object in a Meep run, where you will have arranged this dft_flux

object to live on a cross-sectional surface transverse to the waveguide;

the eigenmodes and propagation constants are computed automatically

under the hood by MPB as normal modes of an in�nitely extended waveguide with the

same cross-sectional material distribution that your structure has on the transverse slice

, and

the coef�cients for as many bands as you like are computed by calling

get_eigenmode_coefficients(), as discussed below.

Main function prototype

The highest-level interface to the mode-expansion implementation in Meep is the libmeep

function meep::fields::get_eigenmode_coefficients, callable from C++ or python. This

routine makes use of several lower-level libmeep functions that you may also �nd useful;

these are documented below and their use is illustrated in the tutorial that follows.

The C++ prototype for the top-level routine is

{ }βn
ω ω

E(r, t) = E(r)e−iωt

H(r, t) = H(r)e−iωt

E(r) = E(x,) = { () + () }ρ ⃗ ∑
n

α+
n E+

n ρ ⃗ e+i xβn α−
n E−

n ρ ⃗ e−i xβn (1)

H(r) = H(x,) = { () + () }ρ ⃗ ∑
n

α+
n H+

n ρ ⃗ e+i xβn α−
n H−

n ρ ⃗ e−i xβn (2)

{ }α±
n

E, H S

{ }α±
n

{E, H}

S

{ , }E±
n H±

n { }βn

S

α±
n

https://mpb.readthedocs.io/en/latest/

where

flux is a dft_flux object pre-populated with frequency-domain �eld data resulting from

a time-domain Meep calculation you have run to tabulate �elds on a cross-sectional slice

perpendicular to your waveguide

d is the direction of power �ow in the waveguide

where is a volume describing the cross-sectional surface

bands is an array of integers that you populate with the indices of the modes for which

you want expansion coef�cients

user_func is an optional function you supply to provide initial estimates of the wavevector

of a mode with given frequency and band index; its prototype is

which returns a vec giving your best guess for the wavevector of the band th mode at

frequency freq .

The return value of get_mode_coefficients is an array of type cdouble (short for

std::complex<double>), of length 2 * num_freqs * num_bands , where num_freqs is the number

of frequencies stored in your flux object (equal to flux->Nfreq) and num_bands is the length

of your bands input array. The expansion coef�cients for the mode with frequency

nf and band index nb are stored sequentially starting at slot 2*nb*num_freqs + nf of this

array:

std::vector<cdouble>

 fields::get_eigenmode_coefficients(dft_flux *flux,

 direction d,

 const volume &where,

 std::vector<int> ban

 kpoint_func k_func=0

 void *user_data=0);

 vec (*kpoint_func)(void user_data, double freq, int ban

S

{ , }α+ α−

Sample application: tapering between
waveguides

As a demonstration of mode expansion, we'll consider the problem of tapering between

waveguides of different sizes. More speci�cally, we'll suppose we have incoming power,

carried by a single mode (typically the fundamental mode) of a �rst waveguide (waveguide A)

that we wish to route into a single mode (typically the same mode) of a second, larger,

waveguide (waveguide B), losing as little power as possible to re�ections or inter-mode

scattering in the process. Simply jamming the ends of the two waveguides together will result

in signi�cant losses due to the abrupt "impedance" mismatch at the interface, so instead we

will consider gradually morphing ("tapering") the waveguide cross section from that of

waveguide A to that of waveguide B over a �nite length L---with a taper pro�le of smoothness

index ---and study the dependence of the mode-to-mode power transfer on and .

The calculations described below are implemented by a python code called wvg-taper.py ,

which we will dissect as we proceed through the example. A C++ version of the same

calculation is wvg-taper.cpp .

First calculation: 2D geometry

 std::vector<cdouble> coeffs=f.get_eigenmode_coefficient

 fields::get_eigenmode_coefficients(dft_flux *flux,

 direction d,

 const volume &where,

 std::vector<int> ban

 kpoint_func k_func=0

 void *user_data=0);

 int num_bands = bands.size();

 int num_freqs = Flux->Nfreq;

 for(int nb=0; nb<num_bands; nb++)

 for(int nf=0; nf<num_freqs++; nf++)

 {

 // get coefficients of forward- and backward-travel

 // waves in eigenmode bands[nb] at frequency #nf

 cdouble AlphaPlus = coeffs[2*nb*num_freqs + nf + 0

 cdouble AlphaMinus = coeffs[2*nb*num_freqs + nf + 1

 ...

p L p

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py
http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.cpp

As a �rst example of relatively modest computational cost, we'll consider a 2D (-invariant)

problem in which the smaller and larger waveguides are simply �nite-thickness slabs of

dielectric material suspended in vacuum. More speci�cally, power travels in the x direction

with the �elds con�ned by the dielectric in the y direction; the smaller and larger waveguides

have thicknesses and and are connected by a taper region of length , so the

slab thickness as a function of reads

where the taper function is a function, i.e. is the index of its �rst discontinuous

derivative. For the cases , the taper functions are

where

are the average and difference of the smaller and larger waveguide thicknesses.

Here are pictures of the taper geometries for the case of a taper of length

between waveguides of thickness and . (See below for the python code that

produces these plots.)

p=0 Taper

z

wA ≥wB wA L

x

w(x) =

⎧

⎩
⎨
⎪⎪⎪
⎪⎪⎪

,wA

(x),Tp

,wB

x < −L
2

x ∈ [− , +]L
2

L
2

x > +L
2

(3)

(x)Tp Cp p

p = {0, 1, 2}

(x) =Tp

⎧

⎩
⎨
⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

+ Δ () ,w0
x
L

+ Δ[() − 2],w0
3
2

x
L

()x
L

3

+ Δ[() − 5 + 6],w0
15
8

x
L

()x
L

3 ()x
L

5

p = 0

p = 1,

p = 2

≡ , Δ = −w0
+wA wB

2
wB wA

p = 0, 1, 2 L = 4
= 1wA = 3wB

p=1 Taper

p=2 Taper

In these �gures, the dashed lines at indicate the locations of cross-sectional planes

that we will use in our calculation: the plane at is where we will place an eigenmode

source in our Meep calculation to describe incoming power entering from the smaller

waveguide, while the plane at is where we will tabulate the Fourier-domain �elds in

our Meep calculation and determine their overlaps with the eigenmodes of the larger

waveguide to compute mode-expansion coef�cients.

User-de�ned material function

Because the material geometries we will be studying here are too complicated to be described

as assemblies of the usual geometric primitives like blocks and cylinders, we will instead write

our own user-de�ned material function, which inputs the coordinates of a point in space and

�lls in a medium structure for the material properties at that point. Actually, since the material

geometry in this case involves a spatially-varying but otherwise simple (isotropic, linear,

lossless) dielectric function, we can get away with the slightly simpler user-de�ned epsilon

function, for which we need only furnish a function of position that returns a scalar relative

permittivity. This is implemented by the my_eps_func() routine in wvg-taper.py; note that it

invokes a subroutine w_func that evaluates equation (3) above to compute the -dependent

waveguide width .

x = xA,B

x = xA

x = xB

x

w(x)

http://127.0.0.1:8000/Python_User_Interface/#GeometricObject
http://127.0.0.1:8000/Python_User_Interface/#material_function
http://127.0.0.1:8000/Python_User_Interface/#medium
http://127.0.0.1:8000/Python_User_Interface/#epsilon_function

We can pass my_eps_func as the value of the epsilon_func keyword argument to the

Simulation class constructor; however, because this expects a function of just a single

argument (the spatial point), we use a lambda construction to package the remaining

arguments, i.e. something like

x-dependent width of waveguide

def w_func(x, L, p, wA, wB):

 if L==0:

 return wA if x<0 else wB

 x0=x/L

 if (x0 < -0.5):

 return wA;

 elif (x0 > +0.5):

 return wB;

 elif p==2:

 return 0.5*(wA+wB) + (wB-wA)*x0*(15.0 + x0*x0*(-40.0

 elif p==1:

 return 0.5*(wA+wB) + (wB-wA)*x0*(1.5 - 2.0*x0*x0);

 else: # default t p==0, simple linear taper

 return 0.5*(wA+wB) + (wB-wA)*x0;

user-defined function for position-dependent material

def my_eps_func(loc, L, p, wA, wB, eps_out, eps_in):

 if (abs(loc.y) > 0.5*w_func(loc.x, L, p, wA, wB)):

 return eps_out; # outside waveguide

 else:

 return eps_in; # inside waveguide

eps_func = lambda loc: my_eps_func(loc, L, p, wA, wB,

 eps_ambient, eps_wave

sim=mp.Simulation(cell_size=mp.Vector3(2*LX, 2*LY),

 resolution=resolution,

 boundary_layers=[mp.PML(DPML)],

 epsilon_func = eps_func

)

http://127.0.0.1:8000/Python_User_Interface/#SimulationClass

The wvg-taper.py code de�nes a class called wvg-taper that accepts keyword arguments for

various geometric parameters and instantiates a Simulation object as in the code snippet

above. For example, here's how we made the pictures of the structures shown above: a couple

of examples involving waveguides and tapers of various geometries:

>>> execfile("wvg-taper.py");

>>> wt=wvg_taper(wA=1, wB=3, L=4, p=0); wt.plot_eps();

>>> wt=wvg_taper(wA=1, wB=3, L=4, p=1); wt.plot_eps();

>>> wt=wvg_taper(wA=1, wB=3, L=4, p=2); wt.plot_eps();

The plot_eps() class method that produces these plots just calls Simulation.get_array to get

a numpy array of ε values at the grid points, then plots it using the imshow routine in

matplotlib:

Visualizing eigenmode pro�les

Next, before doing any timestepping let's calculate and plot the �eld pro�les of some

waveguide modes, for both the smaller and larger waveguides. This calculation is done by the

plot_modes function in the wvg_taper class; you can look at the full Python code to see how

it's done in full detail, but here is a synopsys:

For the lowest-frequency () eigenmode of the smaller waveguide,
and for the �rst several eigenmodes of the larger waveguide, we call the
meep::fields::get_eigenmode routine in libmeep. This routine inputs a

frequency (fcen), an integer (nb), and a meep::volume specifying a
cross-sectional slice through our geometry, then invokes MPB to
determine the nb th eigenmode at frequency fcen for an in�nitely
extended waveguide with constant cross section matching that of our
slice. For example, to compute the eigenmode for an in�nite

 def plot_eps(self):

 eps=self.sim.get_array(center = mp.Vector3(0,0),

 size = self.sim.cell_si

 component = mp.Dielectric)

 plt.figure()

 plt.imshow(eps.transpose())

 plt.show(block=False)

n = 1

n = 1

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py
http://127.0.0.1:8000/Python_User_Interface/
http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py
https://mpb.readthedocs.io/en/latest/

waveguide whose cross section matches that of our structure at
, we say

The return value of get_eigenmode is a data structure containing information on the

computed eigenmode; for example, to get the group velocity or propagation vector of the

mode you could say

vgrp = get_group_velocity(modeA);

k_vector = get_k(modeA)

Alternatively, you can call the meep::fields::output_mode_fields routine to export the and

 components of the eigenmode (at grid points lying in the cross-sectional plane) to an HDF5

�le, i.e.

f.output_mode_fields(modeA, fluxA, vA, "modeA");

where fluxA is a meep::dft_flux structure created for the cross section described by vA .

This will create a �le called modeA.h5 containing values of �eld components at grid points in

vA .

Having computed eigenmodes with get_eigenmode and written their
�eld pro�les to HDF5 �les with output_mode_fields , we can read the
data back in for postprocessing, such as (for example) plotting
eigenmode �eld pro�les. This is done by the plot_fields routine in
wvg-taper.py ; the basic �ow looks something like this:

nb = 1; # want first eigenmode

vA = mp.volume(mp.vec(xA, -YP), mp.vec(xA,+YP)) # c

modeA = f.get_eigenmode(fcen, mp.X, vA, vA, nb, k0, True

x = xA

E

H

https://meep.readthedocs.io/en/latest/Scheme_User_Interface/#Flux_spectra.md
http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py

The plot_modes routine in wvg-taper.py repeats this process for the lowest mode

(ModeA1) and the �rst several modes at (ModeB1...B6) and plots the results:

Adding an eigenmode source and timestepping

The next step is to add an eigenmode source inside the smaller waveguide---that is, a

collection of Meep point sources, lying on the cross-sectional surface at , whose radiated

�elds reproduce the �elds of a given waveguide eigenmode at a given frequency:

 # open HDF5 file

 file = h5py.File("modeA.h5", 'r')

 # read array of Ey values on grid points

 ey = file["ey" + suffix + ".r"][()] + 1j*file["ey" +

 # plot real part

 plt.plot(np.real(Ey))

xA

xB

xA

Next, we timestep to accumulate Fourier-domain �elds on a cross-sectional plane within the

larger waveguide. This is done by the get_flux() method in `wvg_taper.py.

The timestepping continues until the instantaneous Poynting �ux through the �ux plane at

has decayed to 0.1% of its maximum value. When the timestepping is �nished, the Fourier-

domain �elds on the plane at are stored in a dft_flux object called fluxB. and we can

call meep::fields::output_flux_fields to export the �elds to an HDF5 �le, similar to

output_mode_fields which we used above:

f.output_flux_fields(fluxB, vB, 'fluxB')

This produces a �le called fluxB.h5 . One slight difference from output_mode_fields is that

dft_flux objects typically store �eld data for multiple frequencies, so the �eld-component

datasets in the HDF5 �le have names like ey_0.r , ey_1.i .

Visualizing DFT �elds

Having written Fourier-transform �elds to HDF5 �les, we can read in the data and plot, as we

did previously for mode pro�les. In the wvg_taper.py code this is again handled by the

plot_fields routine. Here are the results of this process for a few different values of the

taper length and smoothness index :

sources = [mp.EigenModeSource(src=mp.GaussianSource(fce

 center=mp.Vector3(xA,0.0)

 size=mp.Vector3(0.0,LY),

 eig_band=band_num

)

]

self.sim=mp.Simulation(cell_size=mp.Vector3(LX, LY),

 resolution=resolution,

 boundary_layers=[mp.PML(DPML)],

 force_complex_fields=True,

 epsilon_func = eps_func,

 sources=sources

)

xB

xB

L p

http://127.0.0.1:8000/ModeExpansionFiles/wvg_taper.py
http://127.0.0.1:8000/DFTFlux

Take-home messages:

For (no taper, i.e. abrupt junction) the �elds at look nothing
like the �elds of the lowest eigenmode for the larger structure (second
row of this plot); clearly there is signi�cant contamination from higher
modes.
As we increase the taper length and the smoothness index the �elds at

 more and more closely resemble the lowest eigenmode �elds,
indicating that the taper is working to transfer power adiabatically from
lowest mode to lowest mode.

Making movies

The get_flux() routine in the wvg_taper.py supports a keyword parameter frame_interval

which, if nonzero, de�nes an interval (in meep time) at which images of the instantaneous

Poynting �ux over the entire geometry are to be written to .h5 �les. The default is

frame_interval=0 , in which case these images will not be written.

If you specify (say) frame_interval=1 to get_flux() for a geometry with (say) taper length

 and smoothness index , you will get approximately 100 �les with names like

L = 0 xB

xB

L = 1.2 p = 1

http://127.0.0.1:8000/ModeExpansionFiles/wvg_taper.py

 L1.2_p1_f1.png

 L1.2_p1_f2.png

 L1.2_p1_f3.png

 ...

 L1.2_p1_f105.png

 ...

To assemble all these frame �les into a movie using FFMPEG, go like this:

 # ffmpeg -i 'L1.2_p1_f%d.png' L1.2_p1.mpg

(Note that the string %d in the input �lename is a wildcard that will match all integer values; it

needs to be in single quotes to protect it from shell expansion.)

Here are the movies for the various cases considered above:

Taper Movie

L=0

https://www.ffmpeg.org/
http://127.0.0.1:8000/ModeExpansionFiles/L0_p0.mpg

L=1, p=0

L=2, p=0

L=3, p=0

http://127.0.0.1:8000/ModeExpansionFiles/L1_p0.mpg
http://127.0.0.1:8000/ModeExpansionFiles/L2_p0.mpg
http://127.0.0.1:8000/ModeExpansionFiles/L3_p0.mpg

L=3, p=1

L=3, p=2

Extracting mode-expansion coef�cients

Finally, we call get_mode_coefficients to compute the inner product of the Meep DFT �elds in

the larger waveguide with each of a user-speci�ed list of eigenmodes of the larger waveguide

to compute the fraction of the power carried by each mode.

Intra-modal scattering losses vs. taper length and
smoothness

Repeating this calculation for many taper lengths and smoothness indices yields

the following plots showing the rate of decay of inter-mode scattering losses as the taper

length

L p = 0, 1

L → ∞.

http://127.0.0.1:8000/ModeExpansionFiles/L3_p1.mpg
http://127.0.0.1:8000/ModeExpansionFiles/L3_p2.mpg

Related computational routines

Besides get_eigenmode_coefficients, there are a few computational routines in libmeep that

you may �nd useful for problems like those considered above.

Routine for computing MPB eigenmodes (in mpb.cpp)

Calls MPB to compute the band_num th eigenmode at frequency omega for the portion of your

geometry lying in where (typically a cross-sectional slice of a waveguide). kpoint is an initial

starting guess for what the propagation vector of the waveguide mode will be.

Routines for working with MPB eigenmodes (in
mpb.cpp)

The return value of get_eigenmode is an opaque pointer to a data structure storing

information about the computed eigenmode, which may be passed to the following routines:

 void *fields::get_eigenmode(double &omega,

 direction d, const volume

 const volume &eig_vol,

 int band_num,

 const vec &kpoint, bool ma

 int parity,

 double resolution,

 double eigensolver_tol);

Routines for exporting frequency-domain �elds (in
dft.cpp)

output_flux_fields exports the components of the (frequency-domain) �elds stored in flux

to an HDF5 �le with the given �le name. where is the volume passed to the flux constructor.

In general, flux will store data for �elds at multiple frequencies, each of which will

output_mode_fields is similar, but instead exports the components of the eigenmode

described by mode_data (which should be the return value of a call to get_eigenmode).

Routines for computing overlap integrals (in dft.cpp)

// get a single component of the eigenmode field at a gi

std::complex<double> eigenmode_amplitude(const vec &p, v

// get the group velocity of the eigenmode

double get_group_velocity(void *vedata);

// free all memory associated with the eigenmode

void destroy_eigenmode_data(void *vedata);

 void output_flux_fields(dft_flux *flux, const volume w

 const char *HDF5FileName);

 void output_mode_fields(void *mode_data, dft_flux *flu

 const volume where,

 const char *HDF5FileName);

 std::complex<double> get_mode_flux_overlap(void *mode_

 dft_flux *f

 int num_fre

 const volum

 std::complex<double> get_mode_mode_overlap(void *mode1

 void *mode2

 dft_flux *f

 const volum

get_mode_flux_overlap computes the overlap integral (de�ned by equation (*) above)

between the eigenmode described by mode_data and the �elds stored in flux (for the

num_freq th stored frequency, where num_freq ranges from 0 to flux->Nfreq-1 .) mode_data

should be the return value of a previous call to get_eigenmode.

get_mode_mode_overlap is similar, but computes the overlap integral between two

eigenmodes. (mode1_data and mode2_data may be identical, in which case you get the inner

product of the mode with itself; by the normalization convention used in MPB, this should

equal the group velocity of the mode.)

Under the hood: How mode expansion works

The theoretical basis of the mode-expansion algorithm is the orthogonality relation satis�ed

by the normal modes:

where the inner product involves an integration over transverse coordinates:

where is any surface transverse to the direction of propagation and is the unit normal

vector to (i.e. just in the case considered above). The normalization constant is a

matter of convention, but in MPB it is taken to be the group velocity of the mode, , times

the area of the cross-sectional surface :

Now consider a Meep calculation in which we have accumulated frequency-domain

and �elds on a dft-flux object located on a cross-sectional surface . Invoking the

eigenmode expansion (1) and choosing (without loss of generality) the origin of the axis to

be the position of the cross-sectional plane, the tangential components of the frequency-

domain Meep �elds take the form

where we used the well-known relations between the tangential components of the forward-

traveling and backward-traveling �eld modes:

⟨ | ⟩ = ({σ, τ} ∈ {+, −})Eσ
m Hτ

n Cmδmnδστ (4)

⟨f | g⟩ ≡ [() × g()] ⋅ dA∫
S

f ∗ ρ ⃗ ρ ⃗ n̂ (5)

S n̂

S ẑ Cm

vm
AS S

= .Cm vmAS (6)

Emeep

Hmeep S

x

= (+) ,E
meep
∥

∑
n

α+
n α−

n E+
n∥

(7)

= (−) ,H
meep
∥

∑
n

α+
n α−

n H+
n∥

(8)

https://mpb.readthedocs.io/en/latest/

Taking the inner product (5) of both sides of equations (7) and (8) with the and �elds of

each eigenmode and using equations (4) and (6), we �nd

Thus, by evaluating the integrals on the LHS of these equations---numerically, using the MPB-

computed eigenmode �elds and the Meep-computed �elds as

tabulated on the computational grid---and combining the results appropriately, we can extract

the coef�cients in the expansion (1). This calculation is carried out by the routine

meep::fields::get_mode_flux_overlap . (Although simple in principle, the implementation is

complicated by the fact that, in multi-processor calculations, the Meep �elds needed to

evaluate the integrals are generally not all present on any one processor, but are instead

distributed over multiple processors, requiring some interprocess communication to evaluate

the full integral.)

The Poynting �ux carried by the Meep �elds (7,8) may be expressed in the form

and thus the fractional power carried by any one (forward- or backward-traveling) eigenmode

is given by

1. The theory of waveguide modes is covered in many references; one that we have found

useful is Snyder and Love, Optical Waveguide Theory (Springer, 1983). ↩

= + , = − .E+
n∥

E−
n∥

H+
n∥

H−
n∥

H E

⟨ | ⟩ = +(+)Hm Emeep α+
n α−

n vmAS

⟨ | ⟩ = −(−)Em Hmeep α+
n α+

n vmAS

{E, H}m {E, H }}meep

{ }α±
m

= Re ⟨ | ⟩ = {| − |)}Sx
1

2
Emeep Hmeep 1

2
∑
n

α+
n |2 α−

n |2 vnAS

fractional power carried by ± -traveling mode n =
|α±

n |2vnAS

2Sx

http://www.springer.com/us/book/9780412099502

