
MEEP documentation » C++ Interface » Mode expansion

Eigenmode decomposition of arbitrary
�eld con�gurations
Eigenmode decomposition exploits MEEP's interconnectivity with the MPB mode solver to

express an arbitrary time-harmonic �eld con�guration as a superposition of the normal

harmonic modes of your structure.

TABLE OF CONTENTS

Eigenmode decomposition of arbitrary �eld con�gurations
Theoretical background
C++ function prototype
Sample application: tapering between waveguides

First calculation: 2D geometry
De�ning material functions
Visualizing eigenmode pro�les
Adding an eigenmode source and timestepping
Visualizing DFT �elds
Extracting mode-expansion coef�cients
Intra-modal scattering losses vs. taper length and smoothness

Second calculation: Silicon-on-insulator strip waveguide (3D
geometry)
Under the hood: How mode expansion works
Related computational routines

Routine for computing MPB eigenmodes (in mpb.cpp)
Routines for working with MPB eigenmodes (in mpb.cpp)
Routines for exporting frequency-domain �elds (in dft.cpp)
Routines for computing overlap integrals (in dft.cpp)

Theoretical background

Consider a waveguide structure of in�nite extent in the direction with constant cross

section in the transverse directions. For any given angular frequency we may

solve the time-harmonic Maxwell equations to obtain the normal modes of the structure---an

x

[= (y, z)]ρ ⃗ ω

http://127.0.0.1:8000/
https://mpb.readthedocs.io/en/latest/

in�nite set of vector-valued functions of the transverse coordinates , with

associated propagation constants , that furnish a complete expansion basis for time-

harmonic electromagnetic �elds at frequency . That is, given any arbitrary frequency- �eld

con�guration of the form

we have the exact expansions

where (as discussed further below) the expansion coef�cients may be extracted from

knowledge of the time-harmonic �elds on any cross-sectional surface transverse to

the waveguide.

The idea of mode expansion in MEEP is to compute the coef�cients above for any

arbitrary time-harmonic �eld distribution resulting from a MEEP calculation. In calculations of

this sort,

the �elds on the RHS of equations (1a,b) above will be frequency-domain �elds

stored in a dft_flux object in a MEEP run, where you will have arranged this dft_flux

object to live on a cross-sectional surface transverse to the waveguide;

the eigenmodes and propagation constants are computed automatically

under the hood by MPB as normal modes of an in�nitely extended waveguide with the

same cross-sectional material distribution that your structure has on the transverse slice

, and

the coef�cients for as many bands as you like are computed by calling

get_eigenmode_coefficients(), as discussed below.

C++ function prototype

The basic routine here is

{ (), ()}E±
n ρ ⃗ H±

n ρ ⃗

{ }βn
ω ω

E(r, t) = E(r)e−iωt

H(r, t) = H(r)e−iωt

E(r) = E(x,) = { () + () } (1a)ρ ⃗ ∑
n

α+
n E+

n ρ ⃗ e+i xβn α−
n E−

n ρ ⃗ e−i xβn

H(r) = H(x,) = { () + () } (1b)ρ ⃗ ∑
n

α+
n H+

n ρ ⃗ e+i xβn α−
n H−

n ρ ⃗ e−i xβn

{ }α±
n

E, H S

{ }α±
n

{E, H}

S

{ , }E±
n H±

n { }βn

S

α±
n

https://mpb.readthedocs.io/en/latest/

where

flux is a dft_flux object pre-populated with frequency-domain �eld data resulting from

a time-domain MEEP calculation you have run to tabulate �elds on a cross-sectional slice

perpendicular to your waveguide

d is the direction of power �ow in the waveguide

where is a volume describing the cross-sectional surface

bands is an array of integers that you populate with the indices of the modes for which

you want expansion coef�cients

user_func is an optional function you supply to provide initial estimates of the wavevector

of a mode with given frequency and band index; its prototype is

which returns a vec giving your best guess for the wavevector of the band th mode at

frequency freq .

The return value of get_mode_coefficients is an array of type cdouble (short for

std::complex<double>), of length num_freqs * num_bands , where num_freqs is the number of

frequencies stored in your flux object (equal to flux->Nfreq) and num_bands is the length of

your bands input array. The expansion coef�cient for the mode with frequency nf and band

index nb is stored in the nb*num_freqs + nf slot of this array.

Sample application: tapering between
waveguides
As a demonstration of mode expansion, we'll consider the problem of tapering between

waveguides of different sizes. More speci�cally, we'll suppose we have incoming power,

carried by a single mode (typically the fundamental mode) of a �rst waveguide (waveguide A)

std::vector<cdouble>

 fields::get_eigenmode_coefficients(dft_flux *flux,

 direction d,

 const volume &where,

 std::vector<int> ban

 kpoint_func k_func=0

 void *user_data=0);

 vec (*kpoint_func)(void user_data, double freq, int ban

S

that we wish to route into a single mode (typically the same mode) of a second, larger,

waveguide (waveguide B), losing as little power as possible to re�ections or inter-mode

scattering in the process. Simply jamming the ends of the two waveguides together will result

in signi�cant losses due to the abrupt "impedance" mismatch at the interface, so instead we

will consider gradually morphing ("tapering") the waveguide cross section from that of

waveguide A to that of waveguide B over a �nite length L---with a taper pro�le of smoothness

index ---and study the dependence of the mode-to-mode power transfer on and .

The calculations described below are implemented by a python code called wvg-taper.py ,

which we will dissect as we proceed through the example. A C++ version of the same

calculation is wvg-taper.cpp .

First calculation: 2D geometry

As a �rst example of relatively modest computational cost, we'll consider a 2D (-invariant)

problem in which the smaller and larger waveguides are simply �nite-thickness slabs of

dielectric material suspended in vacuum. More speci�cally, power travels in the x direction

with the �elds con�ned by the dielectric in the y direction; the smaller and larger waveguides

have thicknesses and and are connected by a taper region of length , so the

slab thickness as a function of reads

where the taper function is a function, i.e. is the index of its �rst discontinuous

derivative. For the cases (simple linear taper) and , the taper functions are

where

are the average and difference of the smaller and larger waveguide thicknesses.

Here are cartoons of the and taper geometries:

p=0 Taper

p L p

z

hA ≥hB hA L

x

h(x) =

⎧

⎩
⎨
⎪⎪⎪
⎪⎪⎪

,hA

(x),Tp

,hB

x < −L
2

x ∈ [− , +]L
2

L
2

x > +L
2

(1)

(x)Tp Cp p

p = 0 p = 1

(x) =Tp

⎧
⎩⎨
⎪
⎪

+ Δ () ,h0
x
L

+ Δ[() − 2],h0
3
2

x
L

()x
L

3

p = 0

p = 1

≡ , Δ = −h0
+hA hB

2
hB hA

p = 0 p = 1

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py
http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.cpp

p=1 Taper

De�ning material functions

Because the material geometries we will be studying here are too complicated to be described

as assemblies of the usual geometric primitives like blocks and cylinders, we will instead write

our own user-de�ned material function, which inputs the coordinates of a point in space and

�lls in a medium structure for the material properties at that point. Actually, since the material

geometry in this case involves a spatially-varying but otherwise simple (isotropic, linear,

lossless) dielectric function, we can get away with the slightly simpler user-de�ned epsilon

function, for which we need only furnish a function of position that returns a scalar relative

http://127.0.0.1:8000/Python_User_Interface/#GeometricObject
http://127.0.0.1:8000/Python_User_Interface/#material_function
http://127.0.0.1:8000/Python_User_Interface/#medium
http://127.0.0.1:8000/Python_User_Interface/#epsilon_function

permittivity. This is implemented by the my_eps_func() routine in wvg-taper.py; note that it

invokes a subroutine h_func that evaluates equation (1) above to compute the -dependent

waveguide width .

We can pass my_eps_func as the value of the epsilon_func keyword argument to the

Simulation class constructor; however, because this expects a function of just a single

argument (the spatial point), we use a lambda construction to package the remaining

arguments, i.e. something like

x-dependent width of waveguide

def h_func(x, L, p, hA, hB):

 x0=x/L

 if (x0 < -0.5):

 return hA;

 if (x0 > +0.5):

 return hB;

 if (p==0):

 return 0.5*(hA+hB) + (hB-hA)*x0;

 else: # if (p==1):

 return 0.5*(hA+hB) + (hB-hA)*x0*(1.5 - 2.0*x0*x0);

user-defined function for position-dependent material

def my_eps_func(loc, L, p, hA, hB, eps_out, eps_in):

 if (abs(loc.y) > 0.5*h_func(loc.x, L, p, hA, hB)):

 return eps_out; # outside waveguide

 else:

 return eps_in; # inside waveguide

eps_func = lambda loc: my_eps_func(loc, L, p, hA, hB,

 eps_ambient, eps_wave

sim=mp.Simulation(cell_size=mp.Vector3(2*LX, 2*LY),

 resolution=resolution,

 boundary_layers=[mp.PML(DPML)],

 epsilon_func = eps_func

)

x

h(x)

http://127.0.0.1:8000/Python_User_Interface/#SimulationClass

The wvg-taper.py code de�nes a class called wvg-taper that accepts keyword arguments for

various geometric parameters and instantiates a Simulation object as in the code snippet

above. For example, here are a couple of examples involving waveguides and tapers of various

geometries:

>>> execfile("wvg-taper.py");

>>> wt=wvg_taper(hA=1, hB=3, L=3, p=0);

Initializing structure...

...

time for set_epsilon = 0.242381 s

>>> wt.plot_eps();

>>> wt=wvg_taper(hA=1, hB=4, L=5, p=1);

Initializing structure...

...

time for set_epsilon = 0.242381 s

>>> wt.plot_eps();

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py

Incidentally, the plot_eps() class method that produces these plots just calls

Simulation.get_array to get a numpy array of ε values at the grid points, then plots it using

the imshow routine in matplotlib:

Visualizing eigenmode pro�les

Next, before doing any timestepping let's take a look at the �eld pro�les of some waveguide

modes, for both the smaller and larger waveguides. For this purpose we'll use the

get_eigenmode() routine to solve for individual eigenmodes, then call output_mode_fields()

 def plot_eps(self):

 eps=self.sim.get_array(center = mp.Vector3(0,0),

 size = self.sim.cell_si

 component = mp.Dielectric)

 plt.figure()

 plt.imshow(eps.transpose())

 plt.show(block=False)

http://127.0.0.1:8000/Python_User_Interface/

to write the eigenmode �eld patterns to HDF5 �les, after which we can make plots in

matplotlib. This is done in the plot_modes method of the wvg_taper class:

Insert python code and mode diagrams here

Adding an eigenmode source and timestepping

The next step is to add an eigenmode source inside the smaller waveguide (i.e. a collection of

MEEP point sources on a cross-sectional surface whose radiated �elds reproduce the �elds of

a waveguide eigenmode carrying power in the positive X direction), then timestep to

accumulate Fourier-domain �elds on a cross-sectional plane within the larger waveguide. This

entire procedure is carried out by the get_flux() method in the wvg_taper class, which

accepts some optional arguments to �ne-tune the source con�guration you want.

 ##

 # add an eigenmode-source excitation for the #band_n

 # of the smaller waveguide, then timestep to accumul

 # flux in the larger waveguide.

 # if frame_interval>0, a movie is created showing

 # the fields on the xy plane with one frame

 # every frame_interval time units (in meep time)

 ##

 def get_flux(self, fcen=0.15, df=0.075, nfreq=1, ban

 frame_interval=0):

 #--

 # add eigenmode source at midpoint of smaller wav

 #--

 f=self.sim.fields;

 res=1.0*self.sim.resolution;

 LX=0.5*self.sim.cell_size.x;

 LY=0.5*self.sim.cell_size.y;

 xA=-0.5*LX;

 xB=+0.5*LX;

 vA=mp.volume(mp.vec(xA, -LY), mp.vec(xA,+LY))

 vB=mp.volume(mp.vec(xB, -LY), mp.vec(xB,+LY))

 vC=mp.volume(mp.vec(-LX, -LY), mp.vec(LX,LY))

 src=mp.GaussianSource(fcen, fwidth=df);

 kpoint=mp.vec(0.426302,0);

 parity=0;

 match_frequency=True;

 tol=1.0e-4;

 amp=1.0;

 f.add_eigenmode_source(mp.Dielectric, src, mp.X,

 band_num, kpoint, match_fr

 parity, res, tol, amp);

 #--

 # add DFT flux region at midpoint of larger waveg

 #--

 fluxB=f.add_dft_flux_plane(vB, fcen-0.5*df, fcen+

 #--

 # for DFT flux region for moviemaking if requeste

 #--

 fluxC=0

 if frame_interval>0:

 fluxC=f.add_dft_flux_plane(vC, fcen-0.5*df, fce

 #--

 # timestep until Poynting flux through larger wav

The return value of get_flux() is a flux object that may be postprocessed to yield

visualization �les and/or extract eigenmode expansion coef�cients.

Visualizing DFT �elds

Extracting mode-expansion coef�cients

Finally, we call get_mode_coefficients to compute the inner product of the MEEP DFT �elds

in the larger waveguide with each of a user-speci�ed list of eigenmodes of the larger

waveguide to compute the fraction of the power carried by each mode.

Insert python code here

 # decayed to 0.1% its max value

 #--

 pvInterval=1.0; # check PV decay every 1.0 meep t

 nextPVTime=f.round_time() + pvInterval;

 nextFrameTime=f.round_time();

 MaxPV=0.0;

 Stop=False;

 while Stop==False:

 f.step();

 # check for poynting-flux decay at regular inte

 FieldsDecayed=False;

 if f.round_time() > nextPVTime:

 nextPVTime += pvInterval;

 ThisPV=f.flux_in_box(mp.X,vB)

 if (ThisPV > MaxPV):

 MaxPV = ThisPV;

 elif (ThisPV < 0.001*MaxPV):

 FieldsDecayed=True;

 # output movie frames at regular intervals if r

 # TODO implement me

 SourcesFinished = f.round_time() > f.last_sourc

 Stop = (SourcesFinished and FieldsDecayed);

 print("finished timestepping at {}".format(f.roun

 return fluxB

Intra-modal scattering losses vs. taper length and
smoothness

Repeating this calculation for many taper lengths and smoothness indices yields

the following plots showing the rate of decay of inter-mode scattering losses as the taper

length

Second calculation: Silicon-on-insulator strip
waveguide (3D geometry)

Next we consider a setup similar to the one we just studied, but now involving a 3D geometry-

--a taper between strip waveguides de�ned by patterned silicon strips atop an oxide layer. The

geometry is almost identical to that considered in this MPB calculation, but with the

distinction that the width of the silicon strip is no longer constant, but varies from a smaller

to a larger width via a length- taper just as in the 2D calculation we considered above.

FINISH THIS SECTION

Under the hood: How mode expansion works

The theoretical basis of the mode-expansion algorithm is the orthogonality relation satis�ed

by the normal modes:

where the inner product involves an integration over transverse coordinates:

L p = 0, 1

L → ∞.

w

L

⟨ | ⟩ = ({σ, τ} ∈ {+, −})Eσ
m Hτ

n Cmδmnδστ

http://www.simpetuscloud.com/projects.html#mpb_waveguide

where is any surface transverse to the direction of propagation and is the unit normal

vector to (i.e. just in the case considered above).

FINISH THIS SECTION

Related computational routines

Besides get_eigenmode_coefficients, there are a few computational routines in libmeep that

you may �nd useful for problems like those considered above.

Routine for computing MPB eigenmodes (in mpb.cpp)

Calls MPB to compute the band_num th eigenmode at frequency omega for the portion of your

geometry lying in where (typically a cross-sectional slice of a waveguide). kpoint is an initial

starting guess for what the propagation vector of the waveguide mode will be.

Routines for working with MPB eigenmodes (in
mpb.cpp)

The return value of get_eigenmode is an opaque pointer to a data structure storing

information about the computed eigenmode, which may be passed to the following routines:

 void *fields::get_eigenmode(double &omega,

 direction d, const volume

 const volume &eig_vol,

 int band_num,

 const vec &kpoint, bool ma

 int parity,

 double resolution,

 double eigensolver_tol);

⟨f | g⟩ ≡ [() × g()] ⋅ dA (∗)∫
S

f ∗ ρ ⃗ ρ ⃗ n̂

S n̂

S ẑ

Routines for exporting frequency-domain �elds (in
dft.cpp)

output_flux_fields exports the components of the (frequency-domain) �elds stored in flux

to an HDF5 �le with the given �le name. where is the volume passed to the flux constructor.

In general, flux will store data for �elds at multiple frequencies, each of which will

output_mode_fields is similar, but instead exports the components of the eigenmode

described by mode_data (which should be the return value of a call to get_eigenmode).

Routines for computing overlap integrals (in dft.cpp)

// get a single component of the eigenmode field at a gi

std::complex<double> eigenmode_amplitude(const vec &p, v

// get the group velocity of the eigenmode

double get_group_velocity(void *vedata);

// free all memory associated with the eigenmode

void destroy_eigenmode_data(void *vedata);

 void output_flux_fields(dft_flux *flux, const volume w

 const char *HDF5FileName);

 void output_mode_fields(void *mode_data, dft_flux *flu

 const volume where,

 const char *HDF5FileName);

 std::complex<double> get_mode_flux_overlap(void *mode_

 dft_flux *f

 int num_fre

 const volum

 std::complex<double> get_mode_mode_overlap(void *mode1

 void *mode2

 dft_flux *f

 const volum

get_mode_flux_overlap computes the overlap integral (de�ned by equation (*) above)

between the eigenmode described by mode_data and the �elds stored in flux (for the

num_freq th stored frequency, where num_freq ranges from 0 to flux->Nfreq-1 .) mode_data

should be the return value of a previous call to get_eigenmode.

get_mode_mode_overlap is similar, but computes the overlap integral between two

eigenmodes. (mode1_data and mode2_data may be identical, in which case you get the inner

product of the mode with itself; by the normalization convention used in MPB, this should

equal the group velocity of the mode.)

