MEeEP documentation » C++ Interface » Mode expansion

Eigenmode decomposition of arbitrary
field configurations

Eigenmode decomposition exploits MEEP's interconnectivity with the MPB mode solver to
express an arbitrary time-harmonic field configuration as a superposition of the normal
harmonic modes of your structure.

TABLE OF CONTENTS
e Eigenmode decomposition of arbitrary field configurations
o Theoretical background
o C++ function prototype
o Sample application: tapering between waveguides
= First calculation: 2D geometry
Defining material functions
Visualizing eigenmode profiles
Adding an eigenmode source and timestepping
Visualizing DFT fields
Extracting mode-expansion coefficients
Intra-modal scattering losses vs. taper length and smoothness
o Second calculation: Silicon-on-insulator strip waveguide (3D
geometry)
o Under the hood: How mode expansion works
o Related computational routines
Routine for computing MPB eigenmodes (in mpb.cpp)
Routines for working with MPB eigenmodes (in mpb.cpp)
Routines for exporting frequency-domain fields (in dft.cpp)
Routines for computing overlap integrals (in dft.cpp)

Theoretical background

Consider a waveguide structure of infinite extent in the x direction with constant cross
section in the transverse [g = (y, z)] directions. For any given angular frequency w we may
solve the time-harmonic Maxwell equations to obtain the normal modes of the structure---an

http://127.0.0.1:8000/
https://mpb.readthedocs.io/en/latest/

infinite set of vector-valued functions of the transverse coordinates {E (), HX ()}, with
associated propagation constants {Bn}, that furnish a complete expansion basis for time-
harmonic electromagnetic fields at frequency w. That is, given any arbitrary frequency-w field
configuration of the form

we have the exact expansions

E(r) = E(e,5) = 3 {ai B (5)e ™" + au B, (Fe **} (la)

n

H(r)=H(z,p) =) {anH, (p)e ™" + o, H, (p)e ™"} (1b)

n

where (as discussed further below) the expansion coefficients {a%} may be extracted from
knowledge of the time-harmonic fields E, H on any cross-sectional surface S transverse to
the waveguide.

The idea of mode expansion in MEEP is to compute the {a,il} coefficients above for any
arbitrary time-harmonic field distribution resulting from a MEEP calculation. In calculations of
this sort,

® the {E, H} fields on the RHS of equations (1a,b) above will be frequency-domain fields
storedina dft _flux objectina MEEP run, where you will have arranged this dft flux
object to live on a cross-sectional surface S transverse to the waveguide;

e the {EZ, H> } eigenmodes and {3, } propagation constants are computed automatically
under the hood by MPB as normal modes of an infinitely extended waveguide with the
same cross-sectional material distribution that your structure has on the transverse slice
S, and

® the o coefficients for as many bands as you like are computed by calling

get eigenmode coefficients(), asdiscussed below.

C++ function prototype

The basic routine here is

https://mpb.readthedocs.io/en/latest/

std::vector<cdouble>
fields::get eigenmode coefficients(dft flux *flux,
direction d,
const volume &where,
std::vector<int> ban
kpoint func k func=0
void *user data=0);

4 »
where

® flux isa dft flux object pre-populated with frequency-domain field data resulting from

a time-domain MEEP calculation you have run to tabulate fields on a cross-sectional slice
perpendicular to your waveguide

® d isthedirection of power flow in the waveguide

® here isa volume describing the cross-sectional surface S

® bands isan array of integers that you populate with the indices of the modes for which
you want expansion coefficients

® user func isan optionalfunction you supply to provide initial estimates of the wavevector
of amode with given frequency and band index; its prototype is

vec (*kpoint func)(void user data, double freq, int ban

< >

which returns a vec giving your best guess for the wavevector of the band th mode at

frequency freq .

The return value of get mode coefficients isanarray of type cdouble (short for

std: :complex<double>), of length num fregs * num bands ,where num fregs isthe number of

frequencies stored in your flux object (equalto flux->Nfreq)and num bands isthe length of
your bands input array. The expansion coefficient for the mode with frequency nf and band

index nb isstoredinthe nb*num freqs + nf slotof this array.

Sample application: tapering between
waveguides

As a demonstration of mode expansion, we'll consider the problem of tapering between
waveguides of different sizes. More specifically, we'll suppose we have incoming power,
carried by a single mode (typically the fundamental mode) of a first waveguide (waveguide A)

that we wish to route into a single mode (typically the same mode) of a second, larger,
waveguide (waveguide B), losing as little power as possible to reflections or inter-mode
scattering in the process. Simply jamming the ends of the two waveguides together will result
in significant losses due to the abrupt "impedance" mismatch at the interface, so instead we
will consider gradually morphing ("tapering") the waveguide cross section from that of
waveguide A to that of waveguide B over a finite length L---with a taper profile of smoothness
index p---and study the dependence of the mode-to-mode power transfer on L and p.

The calculations described below are implemented by a python code called wvg-taper.py,

which we will dissect as we proceed through the example. A C++ version of the same
calculationis wvg-taper.cpp .

First calculation: 2D geometry

As a first example of relatively modest computational cost, we'll consider a 2D (z-invariant)
problem in which the smaller and larger waveguides are simply finite-thickness slabs of
dielectric material suspended in vacuum. More specifically, power travels in the xdirection
with the fields confined by the dielectric in the ydirection; the smaller and larger waveguides
have thicknesses h 4 and hg > h 4 and are connected by a taper region of length L, so the
slab thickness as a function of x reads

hy, r < —%
h(z) = { T,(z), ze[-& +L] (1)
hg, xr > ‘|‘%

where the taper function T, (x) is a C” function, i.e. pis the index of its first discontinuous
derivative. For the cases p = 0 (simple linear taper) and p = 1, the taper functions are

ho +A (1), p=0
PO sl 2] pe
where
hoz@, A=hg—hy

are the average and difference of the smaller and larger waveguide thicknesses.
Here are cartoons of the p = 0and p = 1taper geometries:

p=0 Taper

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py
http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.cpp

Y
=
|
|

NMiw
S
I
I

Miw

> T =—

=
|
+
Sy

L
2

Defining material functions

Because the material geometries we will be studying here are too complicated to be described
as assemblies of the usual geometric primitives like blocks and cylinders, we will instead write
our own user-defined material function, which inputs the coordinates of a point in space and
fills in a medium structure for the material properties at that point. Actually, since the material
geometry in this case involves a spatially-varying but otherwise simple (isotropic, linear,
lossless) dielectric function, we can get away with the slightly simpler user-defined epsilon
function, for which we need only furnish a function of position that returns a scalar relative

http://127.0.0.1:8000/Python_User_Interface/#GeometricObject
http://127.0.0.1:8000/Python_User_Interface/#material_function
http://127.0.0.1:8000/Python_User_Interface/#medium
http://127.0.0.1:8000/Python_User_Interface/#epsilon_function

permittivity. This is implemented by the my eps func() routinein wvg-taper.py; notethatit
invokes a subroutine h func thatevaluates equation (1) above to compute the x-dependent
waveguide width h(z).

HAHBRAH SR HHBHHH B AR B R H R AR R B HH R R R R AR R R R RS RS HS R
x-dependent width of waveguide
B L e L e e e e e e
def h_func(x, L, p, hA, hB):
x0=x/L
if (x0 < -0.5):
return hA;
if (x0 > +0.5):
return hB;
if (p==0):
return 0.5*%(hA+hB) + (hB-hA)*x0;
else: # if (p==1):
return 0.5%(hA+hB) + (hB-hA)*x0*(1.5 - 2.0*x0*x0);

HRRARUBRBH AR U R B A AR U R B AR B R BB AR BB RRA BB R B R ARG R BHAHBRRH

user-defined function for position-dependent material
HHHARBHHRRAHBHRAAHHRRAAH BB RAAH BB R AR R B R ARG HBRAHBHRH

def my _eps func(loc, L, p, hA, hB, eps out, eps in):

if (abs(loc.y) > 0.5*h func(loc.x, L, p, hA, hB)):

return eps out; # outside waveguide
else:
return eps in; # inside waveguide

We can pass my eps func asthe value of the epsilon func keyword argument to the
Simulation class constructor; however, because this expects a function of just a single
argument (the spatial point), we use a 1ambda construction to package the remaining

arguments, i.e. something like

eps func = lambda loc: my eps func(loc, L, p, hA, hB,
eps _ambient, eps wave

sim=mp.Simulation(cell size=mp.Vector3(2*LX, 2*LY),
resolution=resolution,
boundary layers=[mp.PML(DPML)],
epsilon func = eps func

http://127.0.0.1:8000/Python_User_Interface/#SimulationClass

The wvg-taper.py code defines aclass called wvg-taper thataccepts keyword arguments for
various geometric parameters and instantiates a Simulation object asin the code snippet
above. For example, here are a couple of examples involving waveguides and tapers of various
geometries:

>>> execfile("wvg-taper.py");
>>> wt=wvg taper(hA=1, hB=3, L=3, p=0);
Initializing structure...

%iﬁe for set epsilon = 0.242381 s
>>> wt.plot eps();

10.5

3.0

1.5

>>> wt=wvg taper(hA=1l, hB=4, L=5, p=1);
Initializing structure...

%iﬁe for set epsilon = 0.242381 s
>>> wt.plot eps();

http://127.0.0.1:8000/ModeExpansionFiles/wvg-taper.py

10.5

9.0

1.5

6.0

4.5

3.0

1.5

Incidentally, the plot eps() class method that produces these plots just calls
Simulation.get array togeta numpy array of € values at the grid points, then plots it using

the imshow routine in matplotlib:

def plot_eps(self):

eps=self.sim.get array(center = mp.Vector3(0,0),
size self.sim.cell si
component = mp.Dielectric)

plt.figure()
plt.imshow(eps.transpose())
plt.show(block=False)

Visualizing eigenmode profiles

Next, before doing any timestepping let's take a look at the field profiles of some waveguide
modes, for both the smaller and larger waveguides. For this purpose we'll use the
get eigenmode() routine to solve for individual eigenmodes, then call output mode fields()

http://127.0.0.1:8000/Python_User_Interface/

to write the eigenmode field patterns to HDF5 files, after which we can make plots in
matplotlib. Thisis doneinthe plot modes method of the wvg taper class:

Insert python code and mode diagrams here

Adding an eigenmode source and timestepping

The next step is to add an eigenmode source inside the smaller waveguide (i.e. a collection of
MEEP point sources on a cross-sectional surface whose radiated fields reproduce the fields of
a waveguide eigenmode carrying power in the positive X direction), then timestep to
accumulate Fourier-domain fields on a cross-sectional plane within the larger waveguide. This
entire procedure is carried out by the get flux() methodinthe wvg taper class, which

accepts some optional arguments to fine-tune the source configuration you want.

bl s s s s S b S S S S S S S G S

add an eigenmode-source excitation for the #band n

of the smaller waveguide, then timestep to accumul

flux in the larger waveguide.

i1f frame interval>0, a movie 1is created showing

the fields on the xy plane with one frame

every frame interval time units (in meep time)

G e B I i

def get flux(self, fcen=0.15, df=0.075, nfreq=1, ban
frame interval=0):

HHHHHH

f=self.sim.fields;

res=1.0*self.sim.resolution;

LX=0.5*self.sim.cell size.x;

LY=0.5*self.sim.cell size.y;

xA=-0.5*%LX;

XB=+0.5*LX;

VA=mp.volume(mp.vec(xA, -LY), mp.vec(xA,+LY))

vB=mp.volume(mp.vec(xB, -LY), mp.vec(xB,+LY))

vC=mp.volume(mp.vec(-LX, -LY), mp.vec(LX,LY))

src=mp.GaussianSource(fcen, fwidth=df);

kpoint=mp.vec(0.426302,0);

parity=0;

match frequency=True;

tol=1.0e-4;

amp=1.0;

f.add eigenmode source(mp.Dielectric, src, mp.X,
band num, kpoint, match fr
parity, res, tol, amp);

fluxC=0
if frame interval>0:
fluxC=f.add dft flux plane(vC, fcen-0.5*df, fce

timestep until Poynting flux through larger wav

decayed to 0.1% its max value

pvInterval=1.0; # check PV decay every 1.0 meep t
nextPVTime=f.round time() + pvInterval;
nextFrameTime=f.round time();

MaxPV=0.0;

Stop=False;

while Stop==False:

f.step();

check for poynting-flux decay at regular inte
FieldsDecayed=False;
if f.round time() > nextPVTime:
nextPVTime += pvInterval;
ThisPV=f.flux in box(mp.X,VvB)
if (ThisPV > MaxPV):
MaxPV = ThisPV;
elif (ThisPV < 0.001*MaxPV):
FieldsDecayed=True;

output movie frames at regular intervals if r
TODO implement me

SourcesFinished = f.round time() > f.last sourc
Stop = (SourcesFinished and FieldsDecayed);

print("finished timestepping at {}".format(f.roun
return fluxB

4

Thereturnvalue of get flux() isa flux object that may be postprocessed to yield

visualization files and/or extract eigenmode expansion coefficients.

Visualizing DFT fields

Extracting mode-expansion coefficients

Finally, we call get mode coefficients tocompute the inner product of the MEEP DFT fields

in the larger waveguide with each of a user-specified list of eigenmodes of the larger
waveguide to compute the fraction of the power carried by each mode.

Insert python code here

Intra-modal scattering losses vs. taper length and
smoothness

Repeating this calculation for many taper lengths L and smoothness indices p = 0, 1yields
the following plots showing the rate of decay of inter-mode scattering losses as the taper
length L — oo.

0.2

01t

0.05 +

Fractional power loss

Second calculation: Silicon-on-insulator strip
waveguide (3D geometry)

Next we consider a setup similar to the one we just studied, but now involving a 3D geometry-
--a taper between strip waveguides defined by patterned silicon strips atop an oxide layer. The
geometry is almost identical to that considered in this MPB calculation, but with the
distinction that the width w of the silicon strip is no longer constant, but varies from a smaller
to a larger width via a length- L taper just as in the 2D calculation we considered above.

FINISH THIS SECTION

Under the hood: How mode expansion works

The theoretical basis of the mode-expansion algorithm is the orthogonality relation satisfied
by the normal modes:

(E% |HT) = C6yanbor ({a, 7} e [+, —})

where the inner product involves an integration over transverse coordinates:

http://www.simpetuscloud.com/projects.html#mpb_waveguide

tle)= [[F()<e@)] haa

where S is any surface transverse to the direction of propagation and 1 is the unit normal
vector to S (i.e.just z in the case considered above).

FINISH THIS SECTION

Related computational routines

Besides get eigenmode coefficients, there are afew computational routinesin libmeep that

you may find useful for problems like those considered above.

Routine for computing MPB eigenmodes (in mpb.cpp)

void *fields::get eigenmode(double &omega,
direction d, const volume
const volume &eig vol,
int band num,
const vec &kpoint, bool ma
int parity,
double resolution,
double eigensolver tol);

Calls MPB to compute the band num th eigenmode at frequency omega for the portion of your
geometry lyingin where (typically a cross-sectional slice of a waveguide). kpoint is aninitial

starting guess for what the propagation vector of the waveguide mode will be.

Routines for working with MPB eigenmodes (in
mpb.. cpp)

The return value of get eigenmode is an opaque pointer to a data structure storing

information about the computed eigenmode, which may be passed to the following routines:

// get a single component of the eigenmode field at a gi
std::complex<double> eigenmode amplitude(const vec &p, v

// get the group velocity of the eigenmode
double get group velocity(void *vedata);

// free all memory associated with the eigenmode
void destroy eigenmode data(void *vedata);

Routines for exporting frequency-domain fields (in
dft.cpp)

void output flux_ fields(dft flux *flux, const volume w
const char *HDF5FileName);

void output_mode fields(void *mode data, dft flux *flu
const volume where,
const char *HDF5FileName);

output flux fields exportsthe components of the (frequency-domain) fields stored in flux
to an HDF5 file with the given file name. where isthe volume passedtothe flux constructor.

In general, flux will store data for fields at multiple frequencies, each of which will

output _mode fields is similar, butinstead exports the components of the eigenmode

described by mode data (which should be the return value of acall to get eigenmode).

Routines for computing overlap integrals (in dft.cpp)

std::complex<double> get mode flux overlap(void *mode
dft flux *f
int num fre
const volum

std::complex<double> get mode mode overlap(void *model
void *mode2
dft flux *f
const volum

4

get_mode flux overlap computes the overlap integral (defined by equation (*) above)
between the eigenmode described by mode data and the fields storedin flux (for the
num freq th stored frequency, where num freq rangesfromOto flux->Nfreq-1.) mode data

should be the return value of a previous call to get eigenmode.

get mode mode overlap issimilar, but computes the overlap integral between two
eigenmodes. (mode1l data and mode2 data may be identical, in which case you get the inner
product of the mode with itself; by the normalization convention used in MPB, this should
equal the group velocity of the mode.)

