From ad28f9d09901d94d7745026b4906f85face19f72 Mon Sep 17 00:00:00 2001 From: "Steven G. Johnson" Date: Wed, 1 Jun 2016 14:01:25 -0400 Subject: [PATCH] move A_mul_B etc docs to linalg section of manual, expand docs, export Ac_ldiv_B\! and At_ldiv_B! --- base/exports.jl | 2 + base/linalg/factorization.jl | 38 ++++++++ base/linalg/linalg.jl | 2 + doc/stdlib/linalg.rst | 174 +++++++++++++++++++++++++++++++++-- doc/stdlib/math.rst | 123 ------------------------- 5 files changed, 210 insertions(+), 129 deletions(-) diff --git a/base/exports.jl b/base/exports.jl index 000d2b4a96d2f..fc9db004b7b4d 100644 --- a/base/exports.jl +++ b/base/exports.jl @@ -267,6 +267,7 @@ export A_rdiv_Bc, A_rdiv_Bt, Ac_ldiv_B, + Ac_ldiv_B!, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_B!, @@ -275,6 +276,7 @@ export Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, + At_ldiv_B!, At_ldiv_Bt, At_mul_B, At_mul_B!, diff --git a/base/linalg/factorization.jl b/base/linalg/factorization.jl index 5e9980f203c93..5b6aade370330 100644 --- a/base/linalg/factorization.jl +++ b/base/linalg/factorization.jl @@ -41,3 +41,41 @@ for (f1, f2) in ((:\, :A_ldiv_B!), end end end + +# support the same 3-arg idiom as in our other in-place A_*_B functions: +for f in (:A_ldiv_B!, :Ac_ldiv_B!, :At_ldiv_B!) + @eval $f(Y::AbstractVecOrMat, A::Factorization, B::AbstractVecOrMat) = + $f(A, copy!(Y, B)) +end + +""" + A_ldiv_B!([Y,] A, B) -> Y + +Compute `A \ B` in-place and store the result in `Y`, returning the result. +If only two arguments are passed, then `A_ldiv_B!(A, B)` overwrites `B` with +the result. + +The argument `A` should *not* be a matrix. Rather, instead of matrices it should be a +factorization object (e.g. produced by [`factorize`](:func:`factorize`) or [`cholfact`](:func:`cholfact`)). +The reason for this is that factorization itself is both expensive and typically allocates memory +(although it can also be done in-place via, e.g., [`lufact`](:func:`lufact`)), +and performance-critical situations requiring `A_ldiv_B!` usually also require fine-grained +control over the factorization of `A`. +""" +A_ldiv_B! + +""" + Ac_ldiv_B!([Y,] A, B) -> Y + +Similar to [`A_ldiv_B!`](:func:`A_ldiv_B!`), but return ``Aᴴ`` \\ ``B``, +computing the result in-place in `Y` (or overwriting `B` if `Y` is not supplied). +""" +Ac_ldiv_B! + +""" + At_ldiv_B!([Y,] A, B) -> Y + +Similar to [`A_ldiv_B!`](:func:`A_ldiv_B!`), but return ``Aᵀ`` \\ ``B``, +computing the result in-place in `Y` (or overwriting `B` if `Y` is not supplied). +""" +At_ldiv_B! diff --git a/base/linalg/linalg.jl b/base/linalg/linalg.jl index 8171bd27448fd..dc36d649fae31 100644 --- a/base/linalg/linalg.jl +++ b/base/linalg/linalg.jl @@ -147,6 +147,7 @@ export A_rdiv_Bt, Ac_ldiv_B, Ac_ldiv_Bc, + Ac_ldiv_B!, Ac_mul_B, Ac_mul_B!, Ac_mul_Bc, @@ -155,6 +156,7 @@ export Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, + At_ldiv_B!, At_mul_B, At_mul_B!, At_mul_Bt, diff --git a/doc/stdlib/linalg.rst b/doc/stdlib/linalg.rst index 55b7c5296403e..30d5dd320531b 100644 --- a/doc/stdlib/linalg.rst +++ b/doc/stdlib/linalg.rst @@ -1459,17 +1459,180 @@ Linear algebra functions in Julia are largely implemented by calling functions f If the keyword argument ``parallel`` is set to ``true``\ , ``peakflops`` is run in parallel on all the worker processors. The flop rate of the entire parallel computer is returned. When running in parallel, only 1 BLAS thread is used. The argument ``n`` still refers to the size of the problem that is solved on each processor. +Low-level matrix operations +--------------------------- + +Matrix operations involving transpositions operations like ``A' \ B`` are converted +by the Julia parser into calls to specially named functions like ``Ac_ldiv_B``. +If you want to overload these operations for your own types, then it is useful +to know the names of these functions. + +Also, in many cases there are in-place versions of matrix operations that +allow you to supply a pre-allocated output vector or matrix. This is useful +when optimizing critical code in order to avoid the overhead of repeated allocations. +These in-place operations are suffixed with ``!`` below (e.g. ``A_mul_B!``) +according to the usual Julia convention. + +.. function:: A_ldiv_B!([Y,] A, B) -> Y + + .. Docstring generated from Julia source + + Compute ``A B`` in-place and store the result in ``Y``\ , returning the result. If only two arguments are passed, then ``A_ldiv_B!(A, B)`` overwrites ``B`` with the result. + + The argument ``A`` should *not* be a matrix. Rather, instead of matrices it should be a factorization object (e.g. produced by :func:`factorize` or :func:`cholfact`\ ). The reason for this is that factorization itself is both expensive and typically allocates memory (although it can also be done in-place via, e.g., :func:`lufact`\ ), and performance-critical situations requiring ``A_ldiv_B!`` usually also require fine-grained control over the factorization of ``A``\ . + +.. function:: A_ldiv_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᴴ`\ . + +.. function:: A_ldiv_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᵀ`\ . + +.. function:: A_mul_B!(Y, A, B) -> Y + + .. Docstring generated from Julia source + + Calculates the matrix-matrix or matrix-vector product :math:`A⋅B` and stores the result in ``Y``\ , overwriting the existing value of ``Y``\ . Note that ``Y`` must not be aliased with either ``A`` or ``B``\ . + + .. doctest:: + + julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B); + + julia> Y + 2×2 Array{Float64,2}: + 3.0 3.0 + 7.0 7.0 + +.. function:: A_mul_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᴴ`\ . + +.. function:: A_mul_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᵀ`\ . + +.. function:: A_rdiv_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᴴ`\ . + +.. function:: A_rdiv_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᵀ`\ . + +.. function:: Ac_ldiv_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`B`\ . + +.. function:: Ac_ldiv_B!([Y,] A, B) -> Y + + .. Docstring generated from Julia source + + Similar to :func:`A_ldiv_B!`\ , but return :math:`Aᴴ` \\ :math:`B`\ , computing the result in-place in ``Y`` (or overwriting ``B`` if ``Y`` is not supplied). + +.. function:: Ac_ldiv_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`Bᴴ`\ . + +.. function:: Ac_mul_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ⋅B`\ . + +.. function:: Ac_mul_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ Bᴴ`\ . + +.. function:: Ac_rdiv_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / B`\ . + +.. function:: Ac_rdiv_Bc(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / Bᴴ`\ . + +.. function:: At_ldiv_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`B`\ . + +.. function:: At_ldiv_B!([Y,] A, B) -> Y + + .. Docstring generated from Julia source + + Similar to :func:`A_ldiv_B!`\ , but return :math:`Aᵀ` \\ :math:`B`\ , computing the result in-place in ``Y`` (or overwriting ``B`` if ``Y`` is not supplied). + +.. function:: At_ldiv_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`Bᵀ`\ . + +.. function:: At_mul_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅B`\ . + +.. function:: At_mul_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅Bᵀ`\ . + +.. function:: At_rdiv_B(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / B`\ . + +.. function:: At_rdiv_Bt(A, B) + + .. Docstring generated from Julia source + + For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / Bᵀ`\ . + BLAS Functions -------------- .. module:: Base.LinAlg.BLAS -:mod:`Base.LinAlg.BLAS` provides wrappers for some of the BLAS functions for -linear algebra. Those BLAS functions that overwrite one of the input -arrays have names ending in ``'!'``. +In Julia (as in much of scientific computation), dense linear-algebra operations are +based on the `LAPACK library `_, which in turn +is built on top of basic linear-algebra building-blocks known as the +`BLAS `_. There are highly optimized implementations +of BLAS available for every computer architecture, and sometimes in +high-performance linear algebra routines it is useful to call the BLAS +functions directly. -Usually a function has 4 methods defined, one each for ``Float64``, -``Float32``, ``Complex128`` and ``Complex64`` arrays. +:mod:`Base.LinAlg.BLAS` provides wrappers for some of the BLAS functions. +Those BLAS functions that overwrite one of the input +arrays have names ending in ``'!'``. Usually, a BLAS function has four methods defined, +for ``Float64``, ``Float32``, ``Complex128``, and ``Complex64`` arrays. .. currentmodule:: Base.LinAlg.BLAS @@ -2362,4 +2525,3 @@ set of functions in future releases. Solves the Sylvester matrix equation ``A * X +/- X * B = scale*C`` where ``A`` and ``B`` are both quasi-upper triangular. If ``transa = N``\ , ``A`` is not modified. If ``transa = T``\ , ``A`` is transposed. If ``transa = C``\ , ``A`` is conjugate transposed. Similarly for ``transb`` and ``B``\ . If ``isgn = 1``\ , the equation ``A * X + X * B = scale * C`` is solved. If ``isgn = -1``\ , the equation ``A * X - X * B = scale * C`` is solved. Returns ``X`` (overwriting ``C``\ ) and ``scale``\ . - diff --git a/doc/stdlib/math.rst b/doc/stdlib/math.rst index 79782b1cf9e49..d9fc48b84d289 100644 --- a/doc/stdlib/math.rst +++ b/doc/stdlib/math.rst @@ -478,129 +478,6 @@ Mathematical Operators Short-circuiting boolean OR. -.. function:: A_ldiv_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᴴ`\ . - -.. function:: A_ldiv_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᵀ`\ . - -.. function:: A_mul_B!(Y, A, B) -> Y - - .. Docstring generated from Julia source - - Calculates the matrix-matrix or matrix-vector product :math:`A⋅B` and stores the result in ``Y``\ , overwriting the existing value of ``Y``\ . Note that ``Y`` must not be aliased with either ``A`` or ``B``\ . - - .. doctest:: - - julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B); - - julia> Y - 2×2 Array{Float64,2}: - 3.0 3.0 - 7.0 7.0 - -.. function:: A_mul_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᴴ`\ . - -.. function:: A_mul_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᵀ`\ . - -.. function:: A_rdiv_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᴴ`\ . - -.. function:: A_rdiv_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᵀ`\ . - -.. function:: Ac_ldiv_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`B`\ . - -.. function:: Ac_ldiv_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`Bᴴ`\ . - -.. function:: Ac_mul_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ⋅B`\ . - -.. function:: Ac_mul_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ Bᴴ`\ . - -.. function:: Ac_rdiv_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / B`\ . - -.. function:: Ac_rdiv_Bc(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / Bᴴ`\ . - -.. function:: At_ldiv_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`B`\ . - -.. function:: At_ldiv_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`Bᵀ`\ . - -.. function:: At_mul_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅B`\ . - -.. function:: At_mul_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅Bᵀ`\ . - -.. function:: At_rdiv_B(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / B`\ . - -.. function:: At_rdiv_Bt(A, B) - - .. Docstring generated from Julia source - - For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / Bᵀ`\ . - Mathematical Functions ----------------------