-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
828 lines (681 loc) · 32.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
import numpy as np
import random
import re
import os
import io
import sys
import itertools
from os.path import isfile, join
np.random.seed(10) #set seed before any keras import
from collections import Counter
from matplotlib import pyplot
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.externals import joblib
from keras.utils import np_utils
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Flatten, LSTM, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
def load_hard_examples(model,vocab_to_load):
#Load the test and train data in seperate arrays
sentences = [l.strip() for l in open("examples.txt").readlines()]
labels = [0,1,1,1,0]
print(sentences[0])
print(len(sentences))
sentences = [clean_str(sent) for sent in sentences]
sentences = [s.split(" ") for s in sentences]
loaded_vocabulary = np.load(vocab_to_load).item()
padded_sentences = pad_sentences(sentences)
x, y = build_input_data(padded_sentences, labels, loaded_vocabulary)
model = load_model(model)
score, acc = model.evaluate(x, y,batch_size=32,verbose=0)
print(model.predict(x))
print('Test score:', score)
print('Test accuracy:', acc)
def movie_review_information(X):
# Summarize review length
print("Review length: ")
result = [len(x) for x in X]
print("Mean %.2f words (%f) %d %d" % (np.mean(result), np.std(result), np.min(result), np.max(result)))
# plot review length
pyplot.boxplot(result)
pyplot.show()
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_imdb_reviews():
#Load the test and train data in seperate arrays
train_positive_sentences = [l.strip() for l in open("IMDB_Data/train-pos.txt").readlines()]
train_negative_sentences = [l.strip() for l in open("IMDB_Data/train-neg.txt").readlines()]
train_positive_labels = [1 for sentence in train_positive_sentences]
train_negative_labels = [0 for sentence in train_negative_sentences]
test_positive_sentences = [l.strip() for l in open("IMDB_Data/test-pos.txt").readlines()]
test_negative_sentences = [l.strip() for l in open("IMDB_Data/test-neg.txt").readlines()]
test_positive_labels = [1 for sentence in test_positive_sentences]
test_negative_labels = [0 for sentence in test_negative_sentences]
"""#Concatenate the sentences and labels for both train and test data
test_sentences = np.concatenate([test_positive_sentences,test_negative_sentences], axis=0)
test_labels = np.concatenate([test_positive_labels,test_negative_labels],axis=0)
train_sentences = np.concatenate([train_positive_sentences,train_negative_sentences],axis=0)
train_labels = np.concatenate([train_positive_labels,train_negative_labels],axis=0)"""
sentences = test_positive_sentences + test_negative_sentences + train_positive_sentences + train_negative_sentences
labels = test_positive_labels + test_negative_labels + train_positive_labels + train_negative_labels
#Randomly take 2000 reviews to match size of RT dataset
rng_state = np.random.get_state()
np.random.shuffle(sentences)
np.random.set_state(rng_state)
np.random.shuffle(labels)
sentences = sentences[:2000]
labels = labels[:2000]
assert(len(sentences) == len(labels))
sentences = [clean_str(sent) for sent in sentences]
sentences = [s.split(" ") for s in sentences]
print("Loaded IMDB movie reviews")
return sentences, labels
def load_imdb_reviews_full():
#Load the test and train data in seperate arrays
train_positive_sentences = [l.strip() for l in open("IMDB_Data/train-pos.txt").readlines()]
train_negative_sentences = [l.strip() for l in open("IMDB_Data/train-neg.txt").readlines()]
train_positive_labels = [1 for sentence in train_positive_sentences]
train_negative_labels = [0 for sentence in train_negative_sentences]
test_positive_sentences = [l.strip() for l in open("IMDB_Data/test-pos.txt").readlines()]
test_negative_sentences = [l.strip() for l in open("IMDB_Data/test-neg.txt").readlines()]
test_positive_labels = [1 for sentence in test_positive_sentences]
test_negative_labels = [0 for sentence in test_negative_sentences]
"""#Concatenate the sentences and labels for both train and test data
test_sentences = np.concatenate([test_positive_sentences,test_negative_sentences], axis=0)
test_labels = np.concatenate([test_positive_labels,test_negative_labels],axis=0)
train_sentences = np.concatenate([train_positive_sentences,train_negative_sentences],axis=0)
train_labels = np.concatenate([train_positive_labels,train_negative_labels],axis=0)"""
sentences = test_positive_sentences + test_negative_sentences + train_positive_sentences + train_negative_sentences
labels = test_positive_labels + test_negative_labels + train_positive_labels + train_negative_labels
"""#Randomly take 2000 reviews to match size of RT dataset
rng_state = np.random.get_state()
np.random.shuffle(sentences)
np.random.set_state(rng_state)
np.random.shuffle(labels)
sentences = sentences[:2000]
labels = labels[:2000]"""
assert(len(sentences) == len(labels))
sentences = [clean_str(sent) for sent in sentences]
sentences = [s.split(" ") for s in sentences]
print("Loaded IMDB movie reviews full")
return sentences, labels
def load_rottentomatoes_reviews():
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
pos_path = "RT_Data/txt_sentoken/pos"
neg_path = "RT_Data/txt_sentoken/neg"
pos_data_dir = os.listdir(pos_path)
neg_data_dir = os.listdir(neg_path)
pos_sentences = []
neg_sentences = []
labels = []
pos_files = [os.path.join(pos_path,f) for f in pos_data_dir if isfile(join(pos_path, f))]
for i in pos_files:
with io.open(i, encoding='latin-1') as f:
content = f.read()
pos_sentences.append(content)
#print(pos_sentences[0])
neg_files = [os.path.join(neg_path,f) for f in neg_data_dir if isfile(join(neg_path, f))]
for i in neg_files:
with io.open(i, encoding='latin-1') as f:
content = f.read()
neg_sentences.append(content)
#print(neg_sentences[0])
for i in range(0,2000):
if(i < 1000):
labels.append(1)
if(i > 999 and i < 2000):
labels.append(0)
sentences = pos_sentences + neg_sentences
#print(all(isinstance(i, str) for i in sentences))
sentences = [clean_str(sent) for sent in sentences]
sentences = [s.split(" ") for s in sentences]
assert(len(labels) == len(sentences))
print("Loaded Rotten Tomatoes movie reviews")
return [sentences, labels]
def pad_sentences(sentences, padding_word="</s>"):
"""
Pads all sentences to the same length. The length is defined by the longest sentence.
Returns padded sentences.
"""
longest_review= max(len(x) for x in sentences)
cross_data_testing = 2642
print("Max review length is: %d " % longest_review)
padded_sentences = []
for i in range(len(sentences)):
sentence = sentences[i]
num_padding = cross_data_testing - len(sentence)
new_sentence = sentence + [padding_word] * num_padding
padded_sentences.append(new_sentence)
return padded_sentences
"""sequence_length = 500 #max(len(x) for x in sentences)
padded_sentences = []
for i in range(len(sentences)):
sentence = sentences[i]
if(len(sentence) <= sequence_length):
num_padding = sequence_length - len(sentence)
new_sentence = sentence + [padding_word] * num_padding
padded_sentences.append(new_sentence)
else:
new_sentence = sentence[0:sequence_length]
padded_sentences.append(new_sentence)
return padded_sentences"""
def build_vocab(sentences):
"""
Builds a vocabulary mapping from word to index based on the sentences.
Returns vocabulary mapping and inverse vocabulary mapping.
"""
cross_vocab_size = 40694
# Build vocabulary
word_counts = Counter(itertools.chain(*sentences))
# Mapping from index to word
vocabulary_inv = [x[0] for x in word_counts.most_common(cross_vocab_size)]
vocabulary_inv.append('UNK')
# Mapping from word to index
vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}
#print(vocabulary)
return [vocabulary, vocabulary_inv]
def build_input_data(sentences, labels, vocabulary):
"""
Maps sentences and labels to vectors based on a vocabulary.
"""
x = np.array([[vocabulary[word] if word in vocabulary else vocabulary['UNK'] for word in sentence] for sentence in sentences])
y = np.array(labels)
print(x[1])
return [x, y]
def logistic_regression(dataset):
if(dataset == "IMDB"):
#Load the test and train data in seperate arrays
train_positive_sentences = [l.strip() for l in open("IMDB_Data/train-pos.txt").readlines()]
train_negative_sentences = [l.strip() for l in open("IMDB_Data/train-neg.txt").readlines()]
train_positive_labels = [1 for sentence in train_positive_sentences]
train_negative_labels = [0 for sentence in train_negative_sentences]
test_positive_sentences = [l.strip() for l in open("IMDB_Data/test-pos.txt").readlines()]
test_negative_sentences = [l.strip() for l in open("IMDB_Data/test-neg.txt").readlines()]
test_positive_labels = [1 for sentence in test_positive_sentences]
test_negative_labels = [0 for sentence in test_negative_sentences]
#Concatenate the sentences and labels for both train and test data
test_sentences = np.concatenate([test_positive_sentences,test_negative_sentences], axis=0)
test_labels = np.concatenate([test_positive_labels,test_negative_labels],axis=0)
train_sentences = np.concatenate([train_positive_sentences,train_negative_sentences],axis=0)
train_labels = np.concatenate([train_positive_labels,train_negative_labels],axis=0)
assert(len(train_sentences)==len(train_labels))
train_data = list(zip(train_sentences,train_labels))
random.shuffle(train_data)
assert(len(test_sentences)==len(test_labels))
test_data = list(zip(test_sentences,test_labels))
random.shuffle(test_data)
x_train = [sentence for sentence, label in train_data]
y_train = [label for sentence, label in train_data]
x_test = [sentence for sentence, label in test_data]
y_test = [label for sentence, label in test_data]
#Since for this research we only want 10% test and 90% train
sentences = np.concatenate([x_train,x_test], axis=0)
labels = np.concatenate([y_train,y_test], axis=0)
cutoff = 0.1*len(sentences) #10% test and 90% train
print("Cutoff is %d" % cutoff)
x_train, x_test = sentences[:-int(cutoff)], sentences[-int(cutoff):]
y_train, y_test = labels[:-int(cutoff)], labels[-int(cutoff):]
print("IMDB data loaded")
#print(x_train[1])
#Make vectorizer
vectorizer = CountVectorizer()
#Logistic Regression
classifier = Pipeline( [('vec', vectorizer),
('clf', LogisticRegression())] )
classifier = classifier.fit(x_train, y_train)
y_predicted_test = classifier.predict(x_test)
#Print the accuracy
accuracy_test = accuracy_score(y_test, y_predicted_test)
print("===== Accuracy LR IMDB ====")
print("Classifier: {0:.2f}".format(accuracy_test*100))
#joblib.dump(classifier, 'IMDB.pkl')
elif(dataset == "RT"):
data_dir = "RT_Data/txt_sentoken/"
classes = ['pos', 'neg']
# Read the data
x_train = []
y_train = []
x_test = []
y_test = []
for curr_class in classes:
dirname = os.path.join(data_dir, curr_class)
for fname in os.listdir(dirname):
with open(os.path.join(dirname, fname), 'r') as f:
content = f.read()
if fname.startswith('cv9'):
x_test.append(content)
if(curr_class == "pos"):
y_test.append(1)
else:
y_test.append(0)
else:
x_train.append(content)
if(curr_class == "pos"):
y_train.append(1)
else:
y_train.append(0)
print("RT data loaded")
#print(x_train[1])
#Make vectorizer
vectorizer = CountVectorizer()
#Logistic Regression
classifier = Pipeline( [('vec', vectorizer),
('clf', LogisticRegression())] )
classifier = classifier.fit(x_train, y_train)
y_predicted_test = classifier.predict(x_test)
#Print the accuracy
accuracy_test = accuracy_score(y_test, y_predicted_test)
print("===== Accuracy LR RT ====")
print("Classifier: {0:.2f}".format(accuracy_test*100))
#joblib.dump(classifier, 'RT.pkl')
else:
print("Unknown dataset")
def MLP_embedding(x_train, y_train, x_test, y_test, x_dev, y_dev, vocab_size, sentence_size,dev,dataset):
# create the model
model = Sequential()
#Embedding layer gives as output a 32x500 matrix
model.add(Embedding(vocab_size, 32, input_length=sentence_size)) #word vector size 32
#model.add(Dropout(0.5)) #location of dropout does not really influence acc (before or after flatten)
#Flatten the 32x500 to one dimension
model.add(Flatten())
model.add(Dropout(0.2))
#Add hidden layer with 250 nodes
model.add(Dense(250, activation='relu'))
#Add output layer with 1 node to output either 0 or 1
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
if dev == 0:
# Fit the model (only 2 epochs are used since overfitting is a problem)
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=128, verbose=1) # 128 > 64 > 32 for RT
# Final evaluation of the model
scores = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
model.save('MLP'+dataset+'.h5')
if dev == 1:
print ("Using dev set for validation")
# Fit the model (only 2 epochs are used since overfitting is a problem)
model.fit(x_train, y_train, validation_data=(x_dev, y_dev), epochs=10, batch_size=128, verbose=1) # 128 > 64 > 32 for RT
# Final evaluation of the model
scores = model.evaluate(x_dev, y_dev, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
def Conv_embedding(x_train, y_train, x_test, y_test, x_dev, y_dev, vocab_size,sentence_size,dev,dataset): # RT has 16 filters, kernelsize 3 and 4 and 5 epochs and IMDB has 32 filters kernelsize 4 and 1 epoch
# create the model
model = Sequential()
model.add(Embedding(vocab_size, 32, input_length=sentence_size))
model.add(Dropout(0.2))
model.add(Conv1D(filters=16, kernel_size=4, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=16, kernel_size=3, padding='same', activation='relu')) #should be 16 for RT dataset
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
if dev == 0:
# Fit the model
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=32, verbose=1) # Epochs should be 1 for IMDB
# Final evaluation of the model
scores = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
#model.save('CONV'+dataset+'.h5')
if dev == 1:
print ("Using dev set for validation")
# Fit the model
model.fit(x_train, y_train, validation_data=(x_dev, y_dev), epochs=10, batch_size=32, verbose=1) #Epochs should be 1 for IMDB
# Final evaluation of the model
scores = model.evaluate(x_dev, y_dev, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
#model.save('CONVRTCROSS.h5')
def LSTM_embedding(x_train, y_train, x_test, y_test,vocab_size,sentence_size):
# Create the model
model = Sequential()
model.add(Embedding(vocab_size, 32, input_length=sentence_size))
#model.add(SpatialDropout1D(0.2))
model.add(LSTM(100))
#model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# Fit the model
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=3, batch_size=128)
# Final evaluation of the model
scores = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
def LSTM_embedding2(x_train, y_train, x_test, y_test,vocab_size,sentence_size):
model = Sequential()
model.add(Embedding(vocab_size, 128))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print(model.summary())
print('Train...')
model.fit(x_train, y_train,
batch_size=32,
epochs=15,
validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,
batch_size=32,verbose=0)
print('Test score:', score)
print('Test accuracy:', acc)
def LSTM_embedding3(x_train,y_train,x_test,y_test,vocab_size,sentence_size):
model = Sequential()
model.add(Embedding(vocab_size, 32, input_length=sentence_size))
model.add(LSTM(200))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print(model.summary())
print('Train...')
model.fit(x_train, y_train,
batch_size=32,
epochs=15,
validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,
batch_size=32,verbose=0)
print('Test score:', score)
print('Test accuracy:', acc)
def LSTM_CNN(x_train, y_train, x_test, y_test,vocab_size,sentence_size):
model = Sequential()
model.add(Embedding(vocab_size, 128, input_length=sentence_size))
model.add(Dropout(0.25))
model.add(Conv1D(filters=64,
kernel_size=5,
padding='valid',
activation='relu',
strides=1))
model.add(MaxPooling1D(pool_size=4))
model.add(LSTM(70))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print(model.summary())
print('Train...')
model.fit(x_train, y_train,
batch_size=30,
epochs=3,
validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test, batch_size=30,verbose=0)
print('Test score:', score)
print('Test accuracy:', acc)
def load_model_predict(model_name, batch_size, sentences, labels, vocab_to_load):
loaded_vocabulary = np.load(vocab_to_load).item()
padded_sentences = pad_sentences(sentences)
x, y = build_input_data(padded_sentences, labels, loaded_vocabulary)
# randomly shuffle data
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
# split train/dev set
cutoff = 0.1*len(x_shuffled) #10% test and 90% train
print("Cutoff is %d" % cutoff)
x_train, x_test = x_shuffled[:-int(cutoff)], x_shuffled[-int(cutoff):]
y_train, y_test = y_shuffled[:-int(cutoff)], y_shuffled[-int(cutoff):]
model = load_model(model_name)
score, acc = model.evaluate(x_test, y_test,
batch_size=batch_size,verbose=0)
print('Test score:', score)
print('Test accuracy:', acc)
def load_lr_predict(model_name,dataset):
if(dataset == "IMDB"):
#Load the test and train data in seperate arrays
train_positive_sentences = [l.strip() for l in open("IMDB_Data/train-pos.txt").readlines()]
train_negative_sentences = [l.strip() for l in open("IMDB_Data/train-neg.txt").readlines()]
train_positive_labels = [1 for sentence in train_positive_sentences]
train_negative_labels = [0 for sentence in train_negative_sentences]
test_positive_sentences = [l.strip() for l in open("IMDB_Data/test-pos.txt").readlines()]
test_negative_sentences = [l.strip() for l in open("IMDB_Data/test-neg.txt").readlines()]
test_positive_labels = [1 for sentence in test_positive_sentences]
test_negative_labels = [0 for sentence in test_negative_sentences]
#Concatenate the sentences and labels for both train and test data
test_sentences = np.concatenate([test_positive_sentences,test_negative_sentences], axis=0)
test_labels = np.concatenate([test_positive_labels,test_negative_labels],axis=0)
train_sentences = np.concatenate([train_positive_sentences,train_negative_sentences],axis=0)
train_labels = np.concatenate([train_positive_labels,train_negative_labels],axis=0)
assert(len(train_sentences)==len(train_labels))
train_data = list(zip(train_sentences,train_labels))
random.shuffle(train_data)
assert(len(test_sentences)==len(test_labels))
test_data = list(zip(test_sentences,test_labels))
random.shuffle(test_data)
x_train = [sentence for sentence, label in train_data]
y_train = [label for sentence, label in train_data]
x_test = [sentence for sentence, label in test_data]
y_test = [label for sentence, label in test_data]
#Since for this research we only want 10% test and 90% train
sentences = np.concatenate([x_train,x_test], axis=0)
labels = np.concatenate([y_train,y_test], axis=0)
cutoff = 0.1*len(sentences) #10% test and 90% train
print("Cutoff is %d" % cutoff)
x_train, x_test = sentences[:-int(cutoff)], sentences[-int(cutoff):]
y_train, y_test = labels[:-int(cutoff)], labels[-int(cutoff):]
print("IMDB data loaded")
if(dataset == "RT"):
data_dir = "RT_Data/txt_sentoken/"
classes = ['pos', 'neg']
# Read the data
x_train = []
y_train = []
x_test = []
y_test = []
for curr_class in classes:
dirname = os.path.join(data_dir, curr_class)
for fname in os.listdir(dirname):
with open(os.path.join(dirname, fname), 'r') as f:
content = f.read()
if fname.startswith('cv9'):
x_test.append(content)
if(curr_class == "pos"):
y_test.append(1)
else:
y_test.append(0)
else:
x_train.append(content)
if(curr_class == "pos"):
y_train.append(1)
else:
y_train.append(0)
classifier = joblib.load(model_name)
y_predicted_test = classifier.predict(x_test)
#Print the accuracy
accuracy_test = accuracy_score(y_test, y_predicted_test)
print("===== LR accuracy with model %s on data %s ====" % (model_name, dataset))
print("Classifier: {0:.2f}".format(accuracy_test*100))
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=pyplot.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
pyplot.imshow(cm, interpolation='nearest', cmap=cmap)
pyplot.title(title)
pyplot.colorbar()
tick_marks = np.arange(len(classes))
pyplot.xticks(tick_marks, classes, rotation=45)
pyplot.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
pyplot.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
pyplot.tight_layout()
pyplot.ylabel('True label')
pyplot.xlabel('Predicted label')
def lr_annotated_data(model_name):
sentences = [l.strip() for l in open("examples.txt").readlines()]
labels = [0,1,1,1,0]
classifier = joblib.load(model_name)
print(classifier.predict(sentences))
y_predicted_test = classifier.predict(sentences)
#Print the accuracy
accuracy_test = accuracy_score(labels, y_predicted_test)
print("===== Accuracy for LR with model %s ====" % model_name)
print("Classifier: {0:.2f}".format(accuracy_test*100))
for i in range (0,5):
print("True: %d Predicted %d" % (labels[i],y_predicted_test[i]))
cnf_matrix = confusion_matrix(labels, y_predicted_test)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
pyplot.figure()
plot_confusion_matrix(cnf_matrix, classes=[0,1],
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
pyplot.figure()
plot_confusion_matrix(cnf_matrix, classes=[0,1], normalize=True,
title='Normalized confusion matrix')
pyplot.show()
def test_hand_annoated():
#Test on hand-annotated examples
load_hard_examples("Trained_Models/CONVIMDBCROSS.h5","Trained_Models/vocabularyIMDB.npy")
load_hard_examples("Trained_Models/MLPIMDBCROSS.h5","Trained_Models/vocabularyIMDB.npy")
load_hard_examples("Trained_Models/CONVRTCROSS.h5","Trained_Models/vocabularyRT.npy")
load_hard_examples("Trained_Models/MLPRTCROSS.h5","Trained_Models/vocabularyRT.npy")
lr_annotated_data("Trained_Models/LRIMDB.pkl")
lr_annotated_data("Trained_Models/LRRT.pkl")
def split_data(dataset):
if dataset == "IMDB":
sentences, labels = load_imdb_reviews_full()
if dataset == "RT":
sentences, labels = load_rottentomatoes_reviews()
padded_sentences = pad_sentences(sentences)
vocabulary, vocabulary_inv = build_vocab(padded_sentences)
#np.save('vocabularyIMDB.npy', vocabulary)
#np.save('vocabularyRT.npy', dictionary)
x, y = build_input_data(padded_sentences, labels, vocabulary)
vocab_size = len(vocabulary)
# randomly shuffle data
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
# split train/dev set
cutoffTest = 0.1*len(x_shuffled) #10% test 10% dev and 80% train
cutoffDev = 0.2*len(x_shuffled)
print("Cutoff for Test is %d and for dev it is %d" % (cutoffTest,cutoffDev))
x_test,y_test = x_shuffled[:int(cutoffTest)], y_shuffled[:int(cutoffTest)]
x_dev, y_dev = x_shuffled[int(cutoffTest):int(cutoffDev)], y_shuffled[int(cutoffTest):int(cutoffDev)]
x_train, y_train = x_shuffled[int(cutoffDev):],y_shuffled[int(cutoffDev):]
with open("x_train.txt", "wb") as fp:
pickle.dump(x_train, fp)
with open("y_train.txt", "wb") as fp:
pickle.dump(y_train, fp)
with open("x_test.txt", "wb") as fp:
pickle.dump(x_test, fp)
with open("y_test.txt", "wb") as fp:
pickle.dump(y_test, fp)
with open("x_dev.txt", "wb") as fp:
pickle.dump(x_dev, fp)
with open("y_dev.txt", "wb") as fp:
pickle.dump(y_dev, fp)
return vocab_size, x_train, y_train, x_test, y_test, x_dev, y_dev
def train_classifier(dataset, classifier, dev):
#vocab_size, x_train, y_train, x_test, y_test, x_dev, y_dev = split_data(dataset) #only first time we need to split the dataset
if dataset == "RT":
with open("RT/x_train.txt", "rb") as fp:
x_train = pickle.load(fp)
with open("RT/y_train.txt", "rb") as fp:
y_train = pickle.load(fp)
with open("RT/x_test.txt", "rb") as fp:
x_test = pickle.load(fp)
with open("RT/y_test.txt", "rb") as fp:
y_test = pickle.load(fp)
with open("RT/x_dev.txt", "rb") as fp:
x_dev = pickle.load(fp)
with open("RT/y_dev.txt", "rb") as fp:
y_dev = pickle.load(fp)
vocab_size = 40695
if dataset == "IMDB":
with open("IMDB/x_train.txt", "rb") as fp:
x_train = pickle.load(fp)
with open("IMDB/y_train.txt", "rb") as fp:
y_train = pickle.load(fp)
with open("IMDB/x_test.txt", "rb") as fp:
x_test = pickle.load(fp)
with open("IMDB/y_test.txt", "rb") as fp:
y_test = pickle.load(fp)
with open("IMDB/x_dev.txt", "rb") as fp:
x_dev = pickle.load(fp)
with open("IMDB/y_dev.txt", "rb") as fp:
y_dev = pickle.load(fp)
vocab_size = 40695
print(x_dev[5])
print(y_dev[5])
print("The distribution of pos and neg in train data is %.2f %.2f" % (float(np.count_nonzero(y_train)/len(y_train)),(1-float(np.count_nonzero(y_train)/len(y_train)))))
print("The number of positive reviews in the train data is %d " % np.count_nonzero(y_train))
sentence_size = x_train.shape[1]
print("Done loading data..")
print ('Train/Dev/Test split: %d/%d/%d' % (len(y_train), len(y_dev), len(y_test)))
print ('train shape:', x_train.shape)
print ('dev shape:',x_dev.shape)
print ('test shape:', x_test.shape)
print ('vocab_size', vocab_size)
print ('sentence max words', sentence_size)
if (classifier == "CNN"):
Conv_embedding(x_train,y_train,x_test,y_test,x_dev, y_dev, vocab_size,sentence_size,dev,dataset)
if (classifier == "MLP"):
MLP_embedding(x_train,y_train,x_test,y_test,x_dev, y_dev, vocab_size,sentence_size,dev,dataset)
def main():
dataset = input("Please enter the dataset you want to train on: ")
classifier = input("Which classifier do you wanna use (CNN, MLP or LR) ")
if (classifier == "LR"):
print("Starting the logistic regression for the %s dataset" %dataset )
logistic_regression(dataset)
else:
validation = input("Do you want to use the dev or test set for validation? ")
print("Starting the %s for the %s dataset" % (classifier, dataset) )
if validation == "dev":
train_classifier(dataset,classifier,1)
if validation == "test":
train_classifier(dataset,classifier,0)
if __name__ == "__main__":
main()
#sentences, labels = load_imdb_reviews_full()
#oad_model_predict("CONVRT.h5",32,sentences,labels,"Trained_Models/vocabularyIMDB.npy")
#load_lr_predict("Trained_Models/LRRT.pkl","IMDB")
#load_lr_predict("Trained_Models/LRIMDB.pkl","RT")