About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.
To use in Observable,
dcuminabs = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dcuminabs@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var dcuminabs = require( 'path/to/vendor/umd/stats-base-dcuminabs/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dcuminabs@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.dcuminabs;
})();
</script>
Computes the cumulative minimum absolute value of double-precision floating-point strided array elements.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcuminabs( x.length, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, 1.0, 1.0 ]
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: stride length for
x
. - y: output
Float64Array
. - strideY: stride length for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative minimum absolute value of every other element in x
,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );
var v = dcuminabs( 4, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
dcuminabs( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 2.0, 2.0, 1.0, 0.0 ]
Computes the cumulative minimum absolute value of double-precision floating-point strided array elements using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcuminabs.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, 1.0, 1.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the cumulative minimum absolute value of every other element in x
starting from the second element and to store in the last N
elements of y
starting from the last element
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );
dcuminabs.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0 ]
- If
N <= 0
, both functions returny
unchanged.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-array-discrete-uniform@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dcuminabs@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );
var y = new Float64Array( x.length );
console.log( y );
dcuminabs( x.length, x, 1, y, -1 );
console.log( y );
})();
</script>
</body>
</html>
@stdlib/stats-base/cuminabs
: calculate the cumulative minimum absolute value of a strided array.@stdlib/stats-strided/dcumaxabs
: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.@stdlib/stats-base/dcumin
: calculate the cumulative minimum of double-precision floating-point strided array elements.@stdlib/stats-base/scuminabs
: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.