About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the sum of strided array elements, ignoring
NaN
values and using pairwise summation.
To use in Observable,
gnansumpw = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-ext-base-gnansumpw@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var gnansumpw = require( 'path/to/vendor/umd/blas-ext-base-gnansumpw/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/blas-ext-base-gnansumpw@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.gnansumpw;
})();
</script>
Computes the sum of strided array elements, ignoring NaN
values and using pairwise summation.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumpw( N, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the sum of every other element in x
,
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumpw( N, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = gnansumpw( N, x1, 2 );
// returns 5.0
Computes the sum of strided array elements, ignoring NaN
values and using pairwise summation and alternative indexing semantics.
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumpw.ndarray( N, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x
starting from the second value
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumpw.ndarray( N, x, 2, 1 );
// returns 5.0
- If
N <= 0
, both functions return0.0
. - In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
- Depending on the environment, the typed versions (
dnansumpw
,snansumpw
, etc.) are likely to be significantly more performant.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-randu@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-round@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/blas-ext-base-gnansumpw@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu()*100.0 );
}
}
console.log( x );
var v = gnansumpw( x.length, x, 1 );
console.log( v );
})();
</script>
</body>
</html>
- Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.
@stdlib/blas-ext/base/dnansumpw
: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.@stdlib/blas-ext/base/gnansum
: calculate the sum of strided array elements, ignoring NaN values.@stdlib/blas-ext/base/gnansumkbn2
: calculate the sum of strided array elements, ignoring NaN values and using a second-order iterative Kahan–Babuška algorithm.@stdlib/blas-ext/base/gnansumors
: calculate the sum of strided array elements, ignoring NaN values and using ordinary recursive summation.@stdlib/blas-ext/base/gsumpw
: calculate the sum of strided array elements using pairwise summation.@stdlib/blas-ext/base/snansumpw
: calculate the sum of single-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.