-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_model.py
46 lines (35 loc) · 1.58 KB
/
generate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import argparse
import sys
parser = argparse.ArgumentParser()
parser.add_argument("iters", type=int)
parser.add_argument("matrix_size", type=int)
args = parser.parse_args(sys.argv[1:])
class Foo(torch.nn.Module):
# `Final` from the `typing_extensions` module can also be used
matrix_size : torch.jit.Final[int]
iters : torch.jit.Final[int]
def __init__(self):
super().__init__()
self.matrix_size = args.matrix_size
self.iters = args.iters
def forward(self, input_tensor):
# create a modestly-large workload
invented_tensor = torch.arange(self.matrix_size, device=input_tensor.device, dtype=input_tensor.dtype) # A N-wide vector
matrix = torch.outer(invented_tensor, input_tensor)
self_product = torch.matmul(matrix, torch.transpose(matrix, 0, 1))
for _ in range(self.iters):
self_product = torch.softmax(torch.matmul(self_product, torch.transpose(self_product, 0, 1)), dim=0)
# collapse it down to the same shape as the input
projection_back = torch.arange(self.matrix_size, device=input_tensor.device, dtype=input_tensor.dtype)
return torch.matmul(self_product, projection_back).flatten()
scripted = torch.jit.script(Foo())
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
output = scripted.forward(torch.rand(1000, device="cuda", dtype=torch.float32))
end.record()
# Waits for everything to finish running
torch.cuda.synchronize()
print(start.elapsed_time(end))
torch.jit.save(scripted, "src/resources/busywork.pt")