forked from tpbarron/pytorch-a2c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
108 lines (86 loc) · 3.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import math
import os
import sys
import torch
import torch.nn.functional as F
import torch.optim as optim
from envs import create_atari_env, create_car_racing_env
from model import ActorCritic
from torch.autograd import Variable
from torchvision import datasets, transforms
def train(args, model, env, optimizer=None):
torch.manual_seed(args.seed)
# env = create_atari_env(args.env_name)
# env = create_car_racing_env()
print ("env: ", env.observation_space.shape, env.action_space)
env.seed(args.seed)
model = ActorCritic(env.observation_space.shape[0], env.action_space)
if optimizer is None:
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model.train()
state = env.reset()
print ("state: ", state.shape)
state = torch.from_numpy(state)
done = True
episode_length = 0
u = 0
while u < args.num_updates:
#print ("update: ", u)
episode_length += 1
# Sync with the shared model
# model.load_state_dict(shared_model.state_dict())
if done:
cx = Variable(torch.zeros(1, model.lstm_size))
hx = Variable(torch.zeros(1, model.lstm_size))
else:
cx = Variable(cx.data)
hx = Variable(hx.data)
values = []
log_probs = []
rewards = []
entropies = []
for step in range(args.num_steps):
value, logit, (hx, cx) = model(
(Variable(state.unsqueeze(0)), (hx, cx)))
prob = F.softmax(logit)
log_prob = F.log_softmax(logit)
entropy = -(log_prob * prob).sum(1)
entropies.append(entropy)
action = prob.multinomial().data
log_prob = log_prob.gather(1, Variable(action))
state, reward, done, _ = env.step(action.numpy())
done = done or episode_length >= args.max_episode_length
reward = max(min(reward, 1), -1)
if done:
episode_length = 0
state = env.reset()
state = torch.from_numpy(state)
values.append(value)
log_probs.append(log_prob)
rewards.append(reward)
if done:
break
R = torch.zeros(1, 1)
if not done:
value, _, _ = model((Variable(state.unsqueeze(0)), (hx, cx)))
R = value.data
values.append(Variable(R))
policy_loss = 0
value_loss = 0
R = Variable(R)
gae = torch.zeros(1, 1)
for i in reversed(range(len(rewards))):
R = args.gamma * R + rewards[i]
advantage = R - values[i]
value_loss = value_loss + 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = rewards[i] + args.gamma * \
values[i + 1].data - values[i].data
gae = gae * args.gamma * args.tau + delta_t
policy_loss = policy_loss - \
log_probs[i] * Variable(gae) - 0.01 * entropies[i]
optimizer.zero_grad()
(policy_loss + 0.5 * value_loss).backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 40)
optimizer.step()
u += 1