-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
128 lines (97 loc) · 3.99 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Carregar o modelo
from keras import backend as K, regularizers
from keras.models import load_model as keras_load_model, Sequential
from keras.layers import Convolution2D, MaxPooling2D, BatchNormalization
from keras.layers.core import Flatten, Dense, Dropout
from keras.optimizers import SGD, Adam
def global_average_pooling(x):
# Mean of a tensor, alongside the specified axis.
# Reference: https://www.tensorflow.org/api_docs/python/tf/keras/backend/mean
return K.mean(x, axis=(2, 3))
def global_average_pooling_shape(input_shape):
return input_shape[0:2]
def convolutions():
dropout = 0.15
bn_momentum = 0.4
l2 = 0.0001
# Model architecture definition
model = Sequential()
model.add(Convolution2D(32, (7, 7), activation='relu', input_shape=(
224, 224, 3), kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.2))
model.add(Convolution2D(32, (7, 7), activation='relu',
kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(dropout))
model.add(Convolution2D(64, (5, 5), activation='relu',
kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.2))
model.add(Convolution2D(64, (5, 5), activation='relu',
kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(dropout))
model.add(Convolution2D(128, (3, 3), activation='relu',
kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(dropout))
model.add(Convolution2D(128, (3, 3), activation='relu',
kernel_regularizer=regularizers.l2(l2)))
model.add(BatchNormalization(momentum=bn_momentum))
#model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(dropout))
# this converts our 3D feature maps to 1D feature vectors
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
# Output Layer
model.add(Dense(2, activation='softmax')) # antes softmax
return model
def compile_model(model, optimizer_='adam'):
l_r = 0.001
if optimizer_ == "sgd":
model.compile(loss='categorical_crossentropy',
# antes sgd, adam, rmsprop
optimizer=SGD(lr=l_r, decay=1e-6),
metrics=['accuracy'])
if optimizer_ == "adam":
model.compile(loss='categorical_crossentropy',
# antes sgd, adam, rmsprop
optimizer=Adam(lr=l_r, decay=1e-6),
metrics=['accuracy'])
return model
def load_model(model_path, optimizer_='adam'):
'''
Load model
model_path: Path to the model file
'''
model = keras_load_model(model_path)
model.load_weights(model_path)
model = compile_model(model, optimizer_)
return model
def get_model(optimizer_='adam'):
model = convolutions()
model = compile_model(model, optimizer_)
return model
def get_model_layers(model):
'''
Get a list with model's layers names
'''
return list(dict([(layer.name, layer) for layer in model.layers]).keys())
def get_model_viewable_layers(model):
'''
Get a list with model's viewable layers names
'''
return list(dict([(layer.name, layer) for layer in model.layers if len(layer.output_shape) == 4]).keys())
def get_model_nb_classes(model):
'''
Get number of classes from a model
'''
return model.layers[-1].output_shape[1]