-
Notifications
You must be signed in to change notification settings - Fork 0
/
dist_calc.py
591 lines (512 loc) · 21.9 KB
/
dist_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import copy
import os
import sys
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotlib.pyplot as plt
import os
import torchvision.utils as vutils
import seaborn as sns
import torch.nn.init as init
import pickle
import json
from sklearn.metrics import classification_report
from torchmetrics.classification import MulticlassAccuracy
class ImbalanceCIFAR10(torchvision.datasets.CIFAR10):
cls_num = 10
def __init__(self, root, imb_type='manual', imb_factor=0.5, rand_number=42, train=True,
transform=None, target_transform=None, download=False, manual_class=[0, 3, 8]):
super(ImbalanceCIFAR10, self).__init__(root, train, transform, target_transform, download)
self.manual_class = manual_class
np.random.seed(rand_number)
img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor)
self.gen_imbalanced_data(img_num_list)
def get_img_num_per_cls(self, cls_num, imb_type, imb_factor):
img_max = len(self.data) / cls_num
img_num_per_cls = []
if imb_type == 'exp':
for cls_idx in range(cls_num):
num = img_max * (imb_factor**(cls_idx / (cls_num - 1.0)))
img_num_per_cls.append(int(num))
elif imb_type == 'step':
for cls_idx in range(cls_num // 2):
img_num_per_cls.append(int(img_max))
for cls_idx in range(cls_num // 2):
img_num_per_cls.append(int(img_max * imb_factor))
elif imb_type == 'manual':
for index in range(cls_num):
if index in self.manual_class:
img_num_per_cls.append(3500)
else:
img_num_per_cls.append(int(img_max))
else:
img_num_per_cls.extend([int(img_max)] * cls_num)
return img_num_per_cls
def gen_imbalanced_data(self, img_num_per_cls):
new_data = []
new_targets = []
targets_np = np.array(self.targets, dtype=np.int64)
classes = np.unique(targets_np)
# np.random.shuffle(classes)
self.num_per_cls_dict = dict()
for the_class, the_img_num in zip(classes, img_num_per_cls):
self.num_per_cls_dict[the_class] = the_img_num
idx = np.where(targets_np == the_class)[0]
np.random.shuffle(idx)
selec_idx = idx[:the_img_num]
new_data.append(self.data[selec_idx, ...])
new_targets.extend([the_class, ] * the_img_num)
new_data = np.vstack(new_data)
self.data = new_data
self.targets = new_targets
def get_cls_num_list(self):
cls_num_list = []
for i in range(self.cls_num):
cls_num_list.append(self.num_per_cls_dict[i])
return cls_num_list
# class ImbalanceCIFAR10(torchvision.datasets.CIFAR10):
# cls_num = 10
# def __init__(self, root, imb_type='exp', imb_factor=0.5, rand_number=0, train=True,
# transform=None, target_transform=None, download=False):
# super(ImbalanceCIFAR10, self).__init__(root, train, transform, target_transform, download)
# np.random.seed(rand_number)
# img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor)
# self.gen_imbalanced_data(img_num_list)
# def get_img_num_per_cls(self, cls_num, imb_type, imb_factor):
# img_max = len(self.data) / cls_num
# img_num_per_cls = []
# if imb_type == 'exp':
# for cls_idx in range(cls_num):
# num = img_max * (imb_factor**(cls_idx / (cls_num - 1.0)))
# img_num_per_cls.append(int(num))
# elif imb_type == 'step':
# for cls_idx in range(cls_num // 2):
# img_num_per_cls.append(int(img_max))
# for cls_idx in range(cls_num // 2):
# img_num_per_cls.append(int(img_max * imb_factor))
# else:
# img_num_per_cls.extend([int(img_max)] * cls_num)
# return img_num_per_cls
# def gen_imbalanced_data(self, img_num_per_cls):
# new_data = []
# new_targets = []
# targets_np = np.array(self.targets, dtype=np.int64)
# classes = np.unique(targets_np)
# # np.random.shuffle(classes)
# self.num_per_cls_dict = dict()
# for the_class, the_img_num in zip(classes, img_num_per_cls):
# self.num_per_cls_dict[the_class] = the_img_num
# idx = np.where(targets_np == the_class)[0]
# np.random.shuffle(idx)
# selec_idx = idx[:the_img_num]
# new_data.append(self.data[selec_idx, ...])
# new_targets.extend([the_class, ] * the_img_num)
# new_data = np.vstack(new_data)
# self.data = new_data
# self.targets = new_targets
# def get_cls_num_list(self):
# cls_num_list = []
# for i in range(self.cls_num):
# cls_num_list.append(self.num_per_cls_dict[i])
# return cls_num_list
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return F.log_softmax(out, dim=-1)
class LeNet5(nn.Module):
def __init__(self, num_classes=10):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def weight_init(m):
'''
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
def checkdir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def resnet18():
return ResNet(BasicBlock, [2,2,2,2])
def make_mask(model):
global step
global mask
step = 0
for name, param in model.named_parameters():
if 'weight' in name:
step = step + 1
mask = [None]* step
step = 0
for name, param in model.named_parameters():
if 'weight' in name:
tensor = param.data.cpu().numpy()
mask[step] = np.ones_like(tensor)
step = step + 1
step = 0
def print_nonzeros(model):
nonzero = total = 0
for name, p in model.named_parameters():
tensor = p.data.cpu().numpy()
nz_count = np.count_nonzero(tensor)
total_params = np.prod(tensor.shape)
nonzero += nz_count
total += total_params
print(f'{name:20} | nonzeros = {nz_count:7} / {total_params:7} ({100 * nz_count / total_params:6.2f}%) | total_pruned = {total_params - nz_count :7} | shape = {tensor.shape}')
print(f'alive: {nonzero}, pruned : {total - nonzero}, total: {total}, Compression rate : {total/nonzero:10.2f}x ({100 * (total-nonzero) / total:6.2f}% pruned)')
return (round((nonzero/total)*100,1))
def original_initialization(mask_temp, initial_state_dict):
global model
step = 0
for name, param in model.named_parameters():
if "weight" in name:
weight_dev = param.device
param.data = torch.from_numpy(mask_temp[step] * initial_state_dict[name].cpu().numpy()).to(weight_dev)
step = step + 1
if "bias" in name:
param.data = initial_state_dict[name]
step = 0
def prune_by_percentile(percent, resample=False, reinit=False,**kwargs):
global step
global mask
global model
# Calculate percentile value
step = 0
for name, param in model.named_parameters():
# We do not prune bias term
if 'weight' in name:
tensor = param.data.cpu().numpy()
alive = tensor[np.nonzero(tensor)] # flattened array of nonzero values
percentile_value = np.percentile(abs(alive), percent)
# Convert Tensors to numpy and calculate
weight_dev = param.device
new_mask = np.where(abs(tensor) < percentile_value, 0, mask[step])
# Apply new weight and mask
param.data = torch.from_numpy(tensor * new_mask).to(weight_dev)
mask[step] = new_mask
step += 1
step = 0
def train(model, train_loader, optimizer, criterion):
EPS = 1e-6
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.train()
for batch_idx, (imgs, targets) in enumerate(train_loader):
optimizer.zero_grad()
#imgs, targets = next(train_loader)
# imgs = imgs
# print(imgs[0])
imgs, targets = imgs.to(device), targets.to(device)
output = model(imgs)
train_loss = criterion(output, targets)
train_loss.backward()
# Freezing Pruned weights by making their gradients Zero
for name, p in model.named_parameters():
if 'weight' in name:
tensor = p.data.cpu().numpy()
grad_tensor = p.grad.data.cpu().numpy()
grad_tensor = np.where(tensor < EPS, 0, grad_tensor)
p.grad.data = torch.from_numpy(grad_tensor).to(device)
optimizer.step()
return train_loss.item()
def test(model, test_loader, criterion):
global multiclass_metric
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
test_loss = 0
correct = 0
y_actual = []
total_y_pred = []
result = None
with torch.no_grad():
for data, target in test_loader:
y_actual.extend(target.tolist())
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
total_y_pred.extend([i[0] for i in pred.tolist()])
#print(pred.tolist())
correct += pred.eq(target.data.view_as(pred)).sum().item()
#print(y_actual, total_y_pred, torch.tensor(y_actual), torch.tensor(total_y_pred))
result = classification_report(y_actual, total_y_pred, output_dict=True)
per_class_accuracy = multiclass_metric(torch.tensor(y_actual),torch.tensor(total_y_pred)).tolist()
result['per_class_accuracy'] = per_class_accuracy # saving the per class accuracy
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
#print("The dict is", result)
return accuracy, result
multiclass_metric = MulticlassAccuracy(num_classes=10, average=None) #for multiclass accuracy change num_classes
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
transform_general = transforms.Compose([transforms.ToTensor()])
traindataset = datasets.CIFAR10('./data/dummy', train=True, download=True,transform=transform_general) # this is for balance
#traindataset = ImbalanceCIFAR10('./data/imbalance',train=True, download=True, transform=transform_general) # this is for imbalance
testdataset = datasets.CIFAR10('./data', train=False, transform=transform_general)
train_loader = torch.utils.data.DataLoader(traindataset, batch_size=60, shuffle=False, num_workers=0,drop_last=False)
#train_loader = cycle(train_loader)
test_loader = torch.utils.data.DataLoader(testdataset, batch_size=60, shuffle=False, num_workers=0,drop_last=True)
# placeholders
# psum = torch.tensor([0.0, 0.0, 0.0])
# psum_sq = torch.tensor([0.0, 0.0, 0.0])
# psum = torch.tensor([0.0])
# psum_sq = torch.tensor([0.0])
# # loop through images
# for inputs in tqdm(test_loader):
# psum += inputs.sum(axis = [0, 2, 3])
# psum_sq += (inputs ** 2).sum(axis = [0, 2, 3])
def batch_mean_and_sd(loader):
cnt = 0
fst_moment = torch.empty(3)
snd_moment = torch.empty(3)
for images, _ in loader:
b, c, h, w = images.shape
nb_pixels = b * h * w
sum_ = torch.sum(images, dim=[0, 2, 3])
sum_of_square = torch.sum(images ** 2,
dim=[0, 2, 3])
fst_moment = (cnt * fst_moment + sum_) / (cnt + nb_pixels)
snd_moment = (cnt * snd_moment + sum_of_square) / (cnt + nb_pixels)
cnt += nb_pixels
mean, std = fst_moment, torch.sqrt(snd_moment - fst_moment ** 2)
return mean,std
mean, std = batch_mean_and_sd(test_loader)
print(mean,std)
# # pixel count
# count = 50000 * 32 * 32
# # mean and std
# total_mean = psum / count
# total_var = (psum_sq / count) - (total_mean ** 2)
# total_std = torch.sqrt(total_var)
# print('mean', total_mean)
# print('var', total_var)
# # output
# print('mean: ' + str(total_mean))
# print('std: ' + str(total_std))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
resnet_model = resnet18().to(device)
lenet_model = LeNet5().to(device)
model = resnet_model
# model.apply(weight_init)
initial_state_dict = copy.deepcopy(model.state_dict()) # check what model points to!
path = './data'
model_string = "dummy"
dataset = 'cifar10'
full_path = f'{path}/{model_string}/{dataset}'
checkdir(f'{full_path}') # change the directory depending on model
torch.save(model, f"{full_path}/initial_state_dict_lt.pth.tar")
make_mask(model)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss() # Default was F.nll_loss
for name, param in model.named_parameters():
print(name, param.size())
bestacc = 0.0
best_accuracy = 0
ITERATION = 1 # number of cycles of pruning that should be done.
comp = np.zeros(ITERATION,float)
bestacc = np.zeros(ITERATION,float)
step = 0
end_iter = 1 # Number of Epochs
all_loss = np.zeros(end_iter, float)
all_accuracy = np.zeros(end_iter, float)
prune_percent = 10 # 10 percent pruning rate
reinit = False # this is false because we are using lottery ticket
resample = False # resample
lr = 1.2e-3
ITE = 1 # First time running the whole process
valid_freq = 1 # frequency of validation
print_freq = 1 # frequency for printing the loss and accuracy (prints every iteration)
for _ite in range(0, ITERATION):
if not _ite == 0:
prune_by_percentile(prune_percent, resample=resample, reinit=reinit)
original_initialization(mask, initial_state_dict)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
print(f"\n--- Pruning Level [{ITE}:{_ite}/{ITERATION}]: ---")
comp[_ite] = print_nonzeros(model)
pbar = tqdm(range(end_iter))
for iter_ in pbar:
# Frequency for Testing
if iter_ % valid_freq == 0:
accuracy, stat_dict = test(model, test_loader, criterion)
# Save Weights if accuracy is greater than best accuracy
if accuracy > best_accuracy:
best_accuracy = accuracy
checkdir(f"{full_path}") # change the path depending on model
json_path = f"{full_path}/{_ite}_stats.json"
with open(json_path, 'w') as f:
json.dump(stat_dict, f)
torch.save(model,f"{full_path}/{_ite}_model_lt.pth.tar")
# Training
loss = train(model, train_loader, optimizer, criterion)
all_loss[iter_] = loss # save loss for that iteration
all_accuracy[iter_] = accuracy # save accuracy for that iteration
# Frequency for Printing Accuracy and Loss
if iter_ % print_freq == 0:
pbar.set_description(
f'Train Epoch: {iter_}/{end_iter} Loss: {loss:.6f} Accuracy: {accuracy:.2f}% Best Accuracy: {best_accuracy:.2f}%')
# bestacc[_ite] = best_accuracy
# print(all_loss, bestacc)
# plt.plot(np.arange(1,(end_iter)+1), 100*(all_loss - np.min(all_loss))/np.ptp(all_loss).astype(float), c="blue", label="Loss")
# plt.plot(np.arange(1,(end_iter)+1), all_accuracy, c="red", label="Accuracy")
# plt.title(f"Loss Vs Accuracy Vs Iterations (CIFAR10,LENET)")
# plt.xlabel("Iterations")
# plt.ylabel("Loss and Accuracy")
# plt.legend()
# plt.grid(color="gray")
# checkdir(f"{full_path}/plots/lt/lenet/cifar10/")
# plt.savefig(f"{full_path}/plots/lt/lenet/cifar10/lt_LossVsAccuracy_{_ite}.png", dpi=1200)
# plt.close()
# Storing the plots
checkdir(f"{full_path}/dumps/lt/lenet/cifar10/")
print("coming here in checkdir")
all_loss.dump(f"{full_path}/dumps/lt/lenet/cifar10/lt_all_loss_{_ite}.dat")
all_accuracy.dump(f"{full_path}/dumps/lt/lenet/cifar10/lt_all_accuracy_{_ite}.dat")
# Storing the model mask
checkdir(f"{full_path}/dumps/lt/lenet/cifar10/")
with open(f"{full_path}/dumps/lt/lenet/cifar10/lt_mask_{_ite}.pkl", 'wb') as fp:
pickle.dump(mask, fp)
best_accuracy = 0 # resetting the variables for next iteration
all_loss = np.zeros(end_iter,float)
all_accuracy = np.zeros(end_iter,float)
checkdir(f"{full_path}/dumps/lt/lenet/cifar10/")
comp.dump(f"{full_path}/dumps/lt/lenet/cifar10/lt_compression.dat") # compression numpy array
bestacc.dump(f"{full_path}/dumps/lt/lenet/cifar10/lt_bestaccuracy.dat") # best acc in each iter
print(comp)
# Plotting
a = np.arange(ITERATION)
plt.plot(a, bestacc, c="blue", label="Winning tickets")
plt.title(f"Test Accuracy vs Unpruned Weights Percentage (lenet,cifar10)")
plt.xlabel("Unpruned Weights Percentage")
plt.ylabel("Test accuracy")
plt.xticks(a, comp, rotation ="vertical")
plt.ylim(0,100)
plt.legend()
plt.grid(color="gray")
checkdir(f"{full_path}/plots/lt/lenet/cifar10/")
plt.savefig(f"{full_path}/plots/lt/lenet/cifar10/lt_AccuracyVsWeights.png", dpi=1200)
plt.close()