Skip to content

Latest commit

 

History

History
35 lines (25 loc) · 1.64 KB

alchemylanguage-gif.md

File metadata and controls

35 lines (25 loc) · 1.64 KB
copyright lastupdated
years
2015, 2017
2017-12-11

{:shortdesc: .shortdesc} {:new_window: target="_blank"} {:tip: .tip} {:pre: .pre} {:codeblock: .codeblock} {:screen: .screen} {:javascript: .ph data-hd-programlang='javascript'} {:java: .ph data-hd-programlang='java'} {:python: .ph data-hd-programlang='python'} {:swift: .ph data-hd-programlang='swift'}

This documentation is for {{site.data.keyword.knowledgestudiofull}} on {{site.data.keyword.cloud}}. To see the documentation for the previous version of {{site.data.keyword.knowledgestudioshort}} on {{site.data.keyword.IBM_notm}} Marketplace, click this link External link icon{: new_window}. {: tip}

How to deploy a model

{: #alchemylanguage-gif}

The graphic illustrates how to deploy a machine-learning annotator for use by {{site.data.keyword.alchemylanguagefull}}. {: shortdesc}

Shows the user opening machine-learning annotator Details, clicking Deploy. After deployment processing completed, the user click the Status link, and sees it is available, and gets the model ID.

After the model is available, you can pass the model ID and API key as parameters to the {{site.data.keyword.IBM_notm}} {{site.data.keyword.alchemylanguageshort}} REST API endpoints. The code uses your trained model to extract information from text.

Related tasks:

Deploying a machine-learning annotator to {{site.data.keyword.IBM_notm}} {{site.data.keyword.alchemylanguageshort}}