-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinteractive_tree.Rmd
270 lines (216 loc) · 9.44 KB
/
interactive_tree.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
title: "Interactive Tree"
author: "Niel Infante"
output: html_document
---
This document will take you through creating an interactive tree plot of your microbiome data.
```{r setup, include=F}
knitr::opts_chunk$set(echo = T, message=F, warning=F)
```
### Load the needed packages.
```{r packages}
library(phyloseq)
library(tidyverse)
library(plotly)
library(data.table)
library(scales)
```
### Read the needed data, turn it into a phyloseq object
Some data munging needs to happen to get the data files we have into the form needed for phyloseq. Ignore these steps if your data is well formed.
```{r read_data}
map <- read_csv('Data_Files/bact_alldata_mapfile.csv')
tax <- read_csv('Data_Files/bact_alldata_taxatable_wTax.csv')
otu <- as.data.frame(select(tax, -X1,-taxonomy))
row.names(otu) <- tax$X1
otu <- otu_table(otu, taxa_are_rows = T)
taxonomy <- data.frame(taxonomy=tax$taxonomy)
row.names(taxonomy)<- tax$X1
# Split taxonomy into separate columns
taxonomy <- data.frame(separate(taxonomy, col=taxonomy, into= c("Domain", "Phylum", "Class", "Order", "Family", "Genus", "Species"), sep = ";"))
# Change spaces to NA for missing data
taxonomy <- apply(taxonomy, 2, function(x) gsub("^$|^ $", NA, x))
taxonomy <- as.matrix(taxonomy)
taxonomy <- tax_table(taxonomy)
names(map)[1] <- 'Sample'
row.names(map) <- map$Sample
map[7:9] <- lapply(map[7:9] , factor)
meta <- sample_data(map)
input_tree <- read_tree('Data_Files/pruned_tree.tre')
ps <- phyloseq(otu, taxonomy, meta, input_tree)
```
### Define tree function
This is the plot tree function from phyloseq. However, I made a few small changes to make it play nicely with plotly. You will not need to change this for your data. Run this step, but you don't have to read all this code. I did so you don't have to, just like Paul McMurdie and Susan Holmes originally wrote the code so I didn't have to.
```{r define_func}
interactive_plot_tree <- function (physeq, method = "sampledodge", nodelabf = NULL, color = NULL,
shape = NULL, size = NULL, min.abundance = Inf, label.tips = NULL,
text.size = NULL, sizebase = 5, base.spacing = 0.02, ladderize = FALSE,
plot.margin = 0.2, title = NULL, treetheme = NULL, justify = "jagged", tooltip = NULL)
{
fix_reserved_vars = function(aesvar) {
aesvar <- gsub("^abundance[s]{0,}$", "Abundance", aesvar,
ignore.case = TRUE)
aesvar <- gsub("^OTU[s]{0,}$", "OTU", aesvar, ignore.case = TRUE)
aesvar <- gsub("^taxa_name[s]{0,}$", "OTU", aesvar, ignore.case = TRUE)
aesvar <- gsub("^sample[s]{0,}$", "Sample", aesvar, ignore.case = TRUE)
return(aesvar)
}
if (!is.null(label.tips)) {
label.tips <- fix_reserved_vars(label.tips)
}
if (!is.null(color)) {
color <- fix_reserved_vars(color)
}
if (!is.null(shape)) {
shape <- fix_reserved_vars(shape)
}
if (!is.null(size)) {
size <- fix_reserved_vars(size)
}
if (is.null(phy_tree(physeq, FALSE))) {
stop("There is no phylogenetic tree in the object you have provided.\n",
"Try phy_tree(physeq) to see for yourself.")
}
if (!inherits(physeq, "phyloseq")) {
method <- "treeonly"
}
treeSegs <- tree_layout(phy_tree(physeq), ladderize = ladderize)
edgeMap = aes(x = xleft, xend = xright, y = y, yend = y)
vertMap = aes(x = x, xend = x, y = vmin, yend = vmax)
p = ggplot(data = treeSegs$edgeDT) + geom_segment(edgeMap) +
geom_segment(vertMap, data = treeSegs$vertDT)
if (is.null(text.size)) {
text.size <- phyloseq:::manytextsize(ntaxa(physeq))
}
if (!is.null(label.tips) & method != "sampledodge") {
labelDT = treeSegs$edgeDT[!is.na(OTU), ]
if (!is.null(tax_table(object = physeq, errorIfNULL = FALSE))) {
taxDT = data.table(tax_table(physeq), OTU = taxa_names(physeq),
key = "OTU")
labelDT = merge(x = labelDT, y = taxDT, by = "OTU")
}
if (justify == "jagged") {
labelMap <- aes_string(x = "xright", y = "y", label = label.tips,
color = color)
}
else {
labelMap <- aes_string(x = "max(xright, na.rm=TRUE)",
y = "y", label = label.tips, color = color)
}
p <- p + geom_text(labelMap, data = labelDT, size = I(text.size),
hjust = -0.1, na.rm = TRUE)
}
if (is.null(nodelabf)) {
nodelabf = phyloseq:::howtolabnodes(physeq)
}
p = nodelabf(p, treeSegs$edgeDT[!is.na(label), ])
p = nodelabf(p, treeSegs$vertDT[!is.na(label), ])
if (is.null(treetheme)) {
treetheme <- theme(axis.ticks = element_blank(), axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.title.y = element_blank(),
axis.text.y = element_blank(), panel.background = element_blank(),
panel.grid.minor = element_blank(), panel.grid.major = element_blank())
}
if (inherits(treetheme, "theme")) {
p <- p + treetheme
}
if (!is.null(title)) {
p <- p + ggtitle(title)
}
if (method != "sampledodge") {
return(p)
}
dodgeDT = treeSegs$edgeDT[!is.na(OTU), ]
dodgeDT = merge(x = dodgeDT, y = data.table(psmelt(physeq),
key = "OTU"), by = "OTU")
if (justify == "jagged") {
dodgeDT <- dodgeDT[Abundance > 0, ]
}
if (!is.null(color) | !is.null(shape) | !is.null(size)) {
setkeyv(dodgeDT, cols = c("OTU", color, shape, size))
}
else {
setkey(dodgeDT, OTU, Sample)
}
dodgeDT[, `:=`(h.adj.index, 1:length(xright)), by = OTU]
if (justify == "jagged") {
dodgeDT[, `:=`(xdodge, (xright + h.adj.index * base.spacing *
max(xright, na.rm = TRUE)))]
}
else {
dodgeDT[, `:=`(xdodge, max(xright, na.rm = TRUE) + h.adj.index *
base.spacing * max(xright, na.rm = TRUE))]
dodgeDT <- dodgeDT[Abundance > 0, ]
}
dodgeMap <- aes_string(x = "xdodge", y = "y", color = color,
fill = color, shape = shape, size = size, names=tooltip)
p <- p + geom_point(dodgeMap, data = dodgeDT, na.rm = TRUE)
if (!is.null(size)) {
p <- p + scale_size_continuous(trans = log_trans(sizebase))
}
if (any(dodgeDT$Abundance >= min.abundance[1])) {
pointlabdf = dodgeDT[Abundance >= min.abundance[1], ]
p <- p + geom_text(mapping = aes(xdodge, y, label = Abundance),
data = pointlabdf, size = text.size, na.rm = TRUE)
}
if (!is.null(label.tips)) {
tiplabDT = dodgeDT
tiplabDT[, `:=`(xfartiplab, max(xdodge)), by = OTU]
tiplabDT <- tiplabDT[h.adj.index == 1, .SD, by = OTU]
if (!is.null(color)) {
if (color %in% sample_variables(physeq, errorIfNULL = FALSE)) {
color <- NULL
}
}
labelMap <- NULL
if (justify == "jagged") {
labelMap <- aes_string(x = "xfartiplab", y = "y",
label = label.tips, color = color)
}
else {
labelMap <- aes_string(x = "max(xfartiplab, na.rm=TRUE)",
y = "y", label = label.tips, color = color)
}
p <- p + geom_text(labelMap, tiplabDT, size = I(text.size),
hjust = -0.1, na.rm = TRUE)
}
min.x <- -0.01
max.x <- dodgeDT[, max(xright, na.rm = TRUE)]
if ("xdodge" %in% names(dodgeDT)) {
max.x <- dodgeDT[, max(xright, xdodge, na.rm = TRUE)]
}
if (plot.margin > 0) {
max.x <- max.x * (1 + plot.margin)
}
p <- p + scale_x_continuous(limits = c(min.x, max.x))
return(p)
}
```
### Subset data
I reduce the data just so plotting is faster. Subset or not as you want to explore your data. subset_samples also is helpful.
```{r subset}
ps_ricket <- subset_taxa(ps, Order=='o__Rickettsiales')
```
### Make reporting taxa
Here I change the taxa table so that there is a column called lowest_taxa. This is the taxonomic classification of the leaf with the lowest known name. NA's are removed, as are entries such as f__.
```{r report}
# Collapse into single column
Lowest_taxa <- do.call(paste, c(as.data.frame(tax_table(ps_ricket))[1:7], sep=";"))
Lowest_taxa <- gsub("(;NA)*$", "", Lowest_taxa, perl=T) # Remove NAs
Lowest_taxa <- gsub("(;.__)*$", "", Lowest_taxa, perl=T) # Remove g__
Lowest_taxa <- gsub("^.*;", "", Lowest_taxa, perl=T) # Remove everything to the left of the remaining entry
# Add back to tax_table
colnames(tax_table(ps_ricket))[1] <- 'Lowest_taxa'
tax_table(ps_ricket)[,'Lowest_taxa'] <- Lowest_taxa
```
This is not necessary, you can use "Family", or whatever taxonomic level you like, by specifying that everywhere you see "Lowest_taxa" below.
### Draw Tree and make interactive
```{r draw_tree}
pt <- interactive_plot_tree(ps_ricket, ladderize="left", color="Vertposition", size='abundance', nodelabf=nodeplotblank, tooltip = 'Lowest_taxa') + scale_color_manual(values=c("black","saddlebrown","tan2","green1","green4"))
plotly_tree<-ggplotly(p=pt, tooltip = 'Lowest_taxa')
plotly_tree
```
This draws the tree. The dots are the different samples we have, colored by sample type. The size of the dot is a measure of abundance. Unfortunately, plotly overwrites color choices, and removes the abundance scale. I will update if I figure out how to fix this.
You can save as an html using the below.
```{r save, eval=F}
htmlwidgets::saveWidget(plotly_tree, 'tree_with_hover.html')
```