-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_bc_2.py
267 lines (226 loc) · 9.96 KB
/
main_bc_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import numpy as np
import torch
import itertools
import pickle
from tqdm import tqdm
from torch.nn import functional as F
from torch import nn
import random
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from src.models import PolicyNet
from src.embeddings import EmbeddingNet
from src.env_utils import make_environment
from src.test_model import test
from src.arguments import parser
from src.utils_bc import (
is_essential_save,
sample_with_minimum_distance,
read_habitat_data,
)
def run(flags):
# Fix seeds
torch.manual_seed(flags.run_id)
torch.cuda.manual_seed(flags.run_id)
np.random.seed(flags.run_id)
random.seed(flags.run_id)
if flags.debug:
flags.n_episodes_test = np.minimum(2, flags.n_episodes_test)
from_env = flags.env
to_env = flags.to_env
# Save paths
base_path = flags.save_path
if not os.path.exists(base_path):
os.makedirs(base_path, exist_ok=True)
save_path = os.path.join(base_path,
from_env + '_em' + \
flags.embedding_name + '_s' + \
str(flags.run_id) + '_' + \
to_env)
# Quick check for resuming runs
resume = False
if os.path.isfile(save_path + '.pickle'):
stats = pickle.load(open(save_path + '.pickle', 'rb'))
if stats[to_env]['frames'][-1] >= flags.max_frames:
print(' WARNING! This run was already completed. Stopping now.')
return
resume = True
# Device setup
flags.device = None
if torch.cuda.is_available() and not flags.disable_cuda:
print('Using CUDA.')
flags.device = torch.device('cuda')
else:
print('Not using CUDA.')
flags.device = torch.device('cpu')
# Init models, env, optimizer, ...
embedding_model = EmbeddingNet(flags.embedding_name,
in_channels=3,
pretrained=True,
train=False,
disable_cuda=flags.disable_cuda)
flags.env = to_env
env = make_environment(flags, embedding_model)
obs_shape = env.gym_env.observation_space.shape
actor_model = PolicyNet(obs_shape, env.gym_env.action_space.n, flags.batch_norm).to(device=flags.device)
optimizer = torch.optim.RMSprop(
actor_model.parameters(),
lr=flags.learning_rate,
momentum=flags.momentum,
eps=flags.epsilon,
alpha=flags.alpha)
max_epochs = flags.max_frames // (flags.unroll_length * flags.batch_size) + 1
def lr_lambda(epoch):
return 1 - epoch / max_epochs
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# Resume old run
if resume:
checkpoint = torch.load(save_path + '.tar')
embedding_model.load_state_dict(checkpoint["embedding_model_state_dict"])
actor_model.load_state_dict(checkpoint["actor_model_state_dict"])
optimizer.load_state_dict(checkpoint["actor_model_optimizer_state_dict"])
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
test_model = PolicyNet(obs_shape, env.gym_env.action_space.n, flags.batch_norm).to(device=flags.device)
test_model.load_state_dict(actor_model.state_dict())
test_model.eval()
print('=== BC run ===')
print(' ', 'embedding:', flags.embedding_name)
print(' ', 'training environment(s):', from_env)
print(' ', 'testing environment(s):', to_env)
if flags.debug:
print(' ', 'RUNNING IN DEBUG MODE!')
# Read data
print('=== Loading trajectories ===')
first = True
for env_id in from_env.split(','):
if flags.embedding_name == 'true_state':
# True state is saved for all embeddings, just take one
data_path = os.path.join(flags.data_path, env_id + '_resnet50' + '.pickle')
else:
data_path = os.path.join(flags.data_path, env_id + '_' + flags.embedding_name + '.pickle')
data = pickle.load(open(data_path, 'rb'))
if flags.debug:
n_samples_scene = flags.batch_size * flags.unroll_length
else:
n_samples_scene = data['obs'].shape[0]
if flags.embedding_name == 'true_state':
obs_scene = data['true_state'][:n_samples_scene]
else:
obs_scene = data['obs'][:n_samples_scene]
if first:
obs = np.array(obs_scene)
action = data['action'][:n_samples_scene]
reward = data['reward'][:n_samples_scene]
done = data['done'][:n_samples_scene]
first = False
else:
obs = np.concatenate((obs, obs_scene))
action = np.concatenate((action, data['action'][:n_samples_scene]))
reward = np.concatenate((reward, data['reward'][:n_samples_scene]))
done = np.concatenate((done, data['done'][:n_samples_scene]))
assert len(obs) == len(action) == len(reward) == len(done), 'data length does not match'
n_samples = len(reward)
assert n_samples > 0, 'no data found'
print(' ', 'total number of samples', n_samples)
del data # Free memory of data we do not need anymore
stat_keys = ['episode_return', 'episode_success']
if resume:
print('=== Resuming previous run ===')
stats = pickle.load(open(save_path + '.pickle', 'rb'))
print(' ', 'frames', stats[to_env]['frames'][-1])
print(' ', 'training loss', stats[to_env]['training_loss'][-1])
print(' ', 'gradient norm', stats[to_env]['gradient_norm'][-1])
for k in stat_keys:
print(' ', k, stats[to_env][k][-1])
init_frames = stats[to_env]['frames'][-1]
else:
print('=== Initial evaluation ===')
stats = dict()
stats.update({to_env: dict({**{k: [] for k in stat_keys}, \
**{'frames': []}, \
**{'training_loss': []}, \
**{'gradient_norm': []}}) \
})
test_model.load_state_dict(actor_model.state_dict())
stats_ep = test(test_model, env, stat_keys, flags.n_episodes_test)
for k in stat_keys:
mu = np.mean(stats_ep[k])
print(' ', k, mu)
stats[to_env][k].append(mu)
stats[to_env]['frames'].append(0)
stats[to_env]['training_loss'].append(np.nan)
stats[to_env]['gradient_norm'].append(np.nan)
init_frames = 0
print('=== Training policy ===')
frames_range = range(init_frames,
flags.max_frames,
flags.batch_size * flags.unroll_length)
for frames in tqdm(frames_range, desc='epoch'):
epoch = frames // (flags.batch_size * flags.unroll_length)
starting_i = sample_with_minimum_distance(n=n_samples, k=flags.batch_size, d=flags.unroll_length)
# Prepare batches: each is composed of `unroll_length` consecutive samples (see IMPALA)
o = []
a = []
d = []
for i in starting_i:
idx = np.mod(np.arange(i, i+flags.unroll_length), n_samples)
o.append(obs[idx])
a.append(action[idx])
d.append(done[idx])
o = np.stack(o, axis=1)
a = np.stack(a, axis=1)
d = np.stack(d, axis=1)
o = torch.from_numpy(o).to(device=flags.device)
a = torch.from_numpy(a).to(device=flags.device)
d = torch.from_numpy(d).to(device=flags.device)
input = dict(obs=o, done=d)
agent_state = actor_model.initial_state(batch_size=flags.batch_size)
agent_state = tuple(s.to(device=actor_model.device) for s in agent_state)
output, agent_state = actor_model(input, agent_state)
loss = F.nll_loss(
F.log_softmax(torch.flatten(output['policy_logits'], 0, 1), dim=-1),
target=torch.flatten(a, 0, 1).long(),
)
scheduler.step()
optimizer.zero_grad()
loss.backward()
gradient_norm = 0.
for p in actor_model.parameters():
if p.grad is not None and p.requires_grad:
gradient_norm += p.grad.detach().data.norm(2).item() ** 2
gradient_norm = gradient_norm ** 0.5
nn.utils.clip_grad_norm_(actor_model.parameters(), flags.max_grad_norm)
optimizer.step()
# Evaluation and stats
if (epoch + 1) % flags.eval_frequency == 0:
test_model.load_state_dict(actor_model.state_dict())
if (flags.essential_save_only and is_essential_save(epoch, max_epochs, flags.eval_frequency)) or \
not flags.essential_save_only: # Save only data that will be used in errorbars
stats_ep = test(test_model, env, stat_keys, flags.n_episodes_test)
for k in stat_keys:
mu = np.mean(stats_ep[k])
print(' ', k, mu)
stats[to_env][k].append(mu)
else: # Fill non-essential points with nan (we need data to have the correct length)
for k in stat_keys:
stats[to_env][k].append(np.nan)
stats[to_env]['frames'].append(frames)
stats[to_env]['training_loss'].append(loss.item())
stats[to_env]['gradient_norm'].append(gradient_norm)
print(' ', 'frames', frames)
print(' ', 'training loss', loss.item())
print(' ', 'gradient norm', gradient_norm)
if not flags.disable_save:
pickle.dump(stats, open(save_path + '.pickle', 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
torch.save({
'embedding_model_state_dict': embedding_model.state_dict(),
'actor_model_state_dict': actor_model.state_dict(),
'actor_model_optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'flags': vars(flags),
}, save_path + '.tar')
env.close()
if __name__ == '__main__':
flags = parser.parse_args()
run(flags)