-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinearRegCostFunction.m
49 lines (24 loc) · 1.28 KB
/
linearRegCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
%
%J=sum((X*theta-y)'*(X*theta-y))/(2*m)+lambda/(2*m) * sum(theta([2:end]).^2 ); % it also gives the correct output
J=sum((X*theta-y).^2)/(2*m)+lambda/(2*m) * sum(theta(2:end).^2 );
grad=(1/m)*X'*(X*theta-y)+(lambda/m)*[0;theta(2:end)]; % it also works.
%grad=(1/m)*sum(X*theta-y)*X' + (lambda/m)*[0;theta(2:end)]; % it returns the less value.
% =========================================================================
grad = grad(:);
end