-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset3Params.m
82 lines (64 loc) · 2.48 KB
/
dataset3Params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
C = [0.01 0.03 0.1 0.3 1 3 10 30];
sigma = [0.01 0.03 0.1 0.3 1 3 10 30];
best_error =1;
for i=1:length(C)
C_new=C(i);
for j=1:length(sigma)
sigma_new=sigma(j);
model= svmTrain(X, y, C_new, @(x1, x2) gaussianKernel(x1, x2, sigma_new));
predictions=svmPredict(model, Xval);
predictions_error=mean(double(predictions ~= yval));
fprintf('New error min for C_new, sigma_new =%f,%f is = %f ', C_new, sigma_new,predictions_error);
if(predictions_error<=best_error)
C_optimal=C_new;
sigma_optimal=sigma_new;
best_error=predictions_error;
end
end
end
C = C_optimal;
sigma = sigma_optimal;
fprintf('New optimal value of C and sigma is= %f, %f', C,sigma);
% values = [0.01 0.03 0.1 0.3 1 3 10 30];
% error_min = inf;
% fprintf('chill hommie i am looking for C and sigma, yo values\n');
% for C = values
% for sigma = values
% fprintf('.');
% model = svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
% err = mean(double(svmPredict(model, Xval) ~= yval));
% if( err <= error_min )
% C_final = C;
% sigma_final = sigma;
% error_min = err;
% fprintf('new min found C, sigma = %f, %f with error = %f', C_final, sigma_final, error_min)
% end
% end
% end
% C = C_final;
% sigma = sigma_final;
% fprintf('Best value C, sigma = [%f %f] with prediction error = %f\n', C, sigma, error_min);
% =========================================================================
% end