-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcostFunctionReg.m
37 lines (24 loc) · 1.28 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h=sigmoid(X*theta);
shift_theta = theta(2:size(theta));
theta_reg = [0;shift_theta];
%J=(-1./m)*(sum(y.*log(h)+(1-y).*log(1-h)))+(lambda/(2*m))*sum(theta_reg.^2); %without vectorization
J=(-1/m)*(y'*log(h)+(1-y)'*log(1-h))+(lambda/(2*m))*theta_reg'*theta_reg; %with vectorization
grad=(1/m)*X'*(h-y)+(lambda/m).*theta_reg;
%grad=(1./m)*sum((h-y).*X)+(lambda/m).*theta; %getting some error.
% =============================================================
end