-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcgraphene.py
181 lines (153 loc) · 6.91 KB
/
mcgraphene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import boundary
import point
import interaction
import contact
import time
import loops
import fermicircle
import atombeamsim
from analyze import *
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import datetime
import time
from progress.bar import IncrementalBar
#plotfunc.plot_inverse_mfp_from_file('data/inverse_mfp/aug_11_inverse_mfp.dat')
#plotfunc.plot_mfp_from_file('data/inverse_mfp/aug_11_inverse_mfp.dat')
"""choose boundary by creating instance from class"""
#bound = boundary.Circle(0,0,1,1,10)
#bound = boundary.Rectangle(length = 150, width = 10)
vertices = [(0,2),(0,4),(2,4),(2,6),(4,6),(4,4),(64,4),(64,2),(62,2),(62,0),(60,0),(60,2)]
vertices.reverse()
#shortvertices = [(0,2),(0,4),(2,4),(2,6),(4,6),(4,4),(16,4),(16,2),(14,2),(14,0),(12,0),(12,2)]
#shortvertices.reverse()
# %% codecell
import numpy as np
tup = (1,2)
list(tup)
# %% codecell
sheets = 30
length = 30
diameter = 3
tolerance = 0
angle = 90
vertices = atombeamsim.get_vertices_angled(tolerance, diameter, length, sheets, angle)
bound = boundary.Polygon(vertices)
# %% codecell
"""parameters to be chosen for simualtion"""
f_list = [0.03] # f denotes probability of diffuse scattering
emissivity = 0.4
n_particle = 10000 # number of phonons to be released by the source
binwidth = 0.1 # binning for any histograms to be created
specie = 'phonon'
#e_fermi = 10
#n_k_vec = n_particle #must be even
#d_kx = 1
lower = 0
upper = 16
nbins = 100
"""create instance of the leads to include in the simulation"""
#therm_len = '0'
source_coords = [list(vertices[0]),list(vertices[-1])]
drain_coords = [list(vertices[2*sheets-1]),list(vertices[2*sheets])]
source_coords.reverse()
# %% codecell
source = contact.Source(source_coords)
drain = contact.Drain(drain_coords)
#v1 = contact.Thermometer(bound.lead_coordinates('v1'), emissivity)
#v2 = contact.Thermometer(bound.lead_coordinates('v2'), emissivity)
#th1 = contact.Thermometer(bound.lead_coordinates(therm_len+'t1'))
#th2 = contact.Thermometer(bound.lead_coordinates(therm_len+'t2'))
contacts = [source, drain]#, v1, v2]#, th1, th2] #save in list for easier access
#sample = fermicircle.gen_sample(e_fermi, n_k_vec)
#centered_fermi_circle = fermicircle.Fermi_circle(sample, e_fermi, "Equilibrium")
#shifted_fermi_circle = fermicircle.Fermi_circle(centered_fermi_circle.shift(d_kx), e_fermi, "Non-Equilibrium")
#unchanged_shifted_fermi_circle = fermicircle.Fermi_circle(centered_fermi_circle.shift(d_kx), e_fermi, "Shifted, Unchanged")
#original_center = centered_fermi_circle.center()
#isual.show_fermi_circles([centered_fermi_circle])
"""lists that will be added to in the course of the simulation"""
emission_points = [] #array of interaction points at the boundary
trajectories = []
inverse_mfp = [] #array of the inverse mfp
centers = []
success_array = []
#k_vectors = []
visual.show_boundary(bound, contacts)
plt.show()
# start timer for loop
tic = time.perf_counter()
print("timer started at: "+ str(datetime.datetime.now()))
# main simuation loop
for f in range(len(f_list)):# --------- loop of f values ---------
released = 0 #counter for the number of phonons released
f_emissions = [] #list of the intersection for the f
f_centers = []
f_trajectories = []
f_k_vectors = []
bar = IncrementalBar('Progress f = '+str(f_list[f]), max = n_particle)
while released < n_particle:
"""loop until the specifed number of phonons has been released"""
trajectory = []
particle = interaction.intialize_particle(source, specie, released)
loops.initialize_f_arrays(f_emissions, f_centers, trajectory, particle)
#f_k_vectors.append(particle.fermi_circle.sample[released])
drain_collisions = drain.n_collisions
while True:
"""loop through until phonon collides with source or drain"""
end = False
end = loops.polygon_loop(particle, f_list[f], bound, contacts)
#f_k_vectors.append(particle.fermi_circle.sample[released])
visual.update_trajectory(particle, trajectory)
loops.update_f_arrays(f_emissions, f_centers, particle)
if end: break
if drain.n_collisions > drain_collisions:
success_array.append(True)
else:
success_array.append(False)
released += 1
#visual.show_boundary(bound, contacts)
#visual.show_trajectory(trajectory)
#plt.show()
#visual.show_fermi_circles([centered_fermi_circle, shifted_fermi_circle])
#plt.show()
f_trajectories.append(trajectory)
bar.next()
# ------------------
print('\n Transmitted: '+ str(calculate.transmitted_precent(drain.n_collisions, source.n_collisions))) #print transmission rate
# caluclate mfp and append the inverse to the array for current f value
#mfp = plotfunc.mean_free_path(drain, source, th2, th1, bound)
#inverse_mfp.append(1/mfp)
for c in contacts: c.n_collisions = 0 #reset the collision count for the leads
loops.update_arrays(trajectories, emission_points, centers, f_trajectories, f_emissions, f_centers)
#k_vectors.append(f_k_vectors)
# ------------------
# end timer for the loop
bar.finish()
toc = time.perf_counter()
print(f"Executed loop in {toc - tic:0.4f} seconds")
#visual.show_fermi_circles([centered_fermi_circle, unchanged_shifted_fermi_circle, shifted_fermi_circle])
#plt.show()
#print(trajectories)
#analyze_fermicircle.save_array(k_vectors[0], f_list[0], emissivity, n_particle, 'k_vectors')
#analyze_fermicircle.save_array(emission_points[0], f_list[0], emissivity, n_particle, 'emissions')
#analyze_fermicircle.plot_deviations_length(original_center, centers[0], emission_points[0], 2, 14)
#for i in [0, 9, 19, 29, 39, 49]:
#analyze_fermicircle.plot_circle_at_point(k_vectors[0], emission_points[0], 0, 64, 50, i)
#analyze_fermicircle.fermi_circles_from_kvectors(original_center, k_vectors[0], emission_points[0], 0, 64, 50)
angle_array = atombeamsim.get_exit_angle_array(trajectories, success_array)
with open('angle_array_smooth.npy', 'wb') as f:
np.save(f, angle_array)
# t_profiles.plot_theta_polar(angle_array)
#k_vectors_04 = np.loadtxt('../data_mcgraphenesim/k_vectors/2020-10-02_f0.06__e0.4_100000.dat')
#emissions_04 = np.loadtxt('../data_mcgraphenesim/emissions/2020-10-02_f0.06__e0.4_100000.dat')
#k_vectors_003 = np.loadtxt('../data_mcgraphenesim/k_vectors/2020-10-02_f0.03__e0.4_100000.dat')
#emissions_003 = np.loadtxt('../data_mcgraphenesim/emissions/2020-10-02_f0.03__e0.4_100000.dat')
#middles_ratios_04 = analyze_fermicircle.convert_to_middles_ratios(k_vectors_04, emissions_04, lower, upper, nbins, e_fermi)
#middles_ratios_003 = analyze_fermicircle.convert_to_middles_ratios(k_vectors_003, emissions_003, lower, upper, nbins, e_fermi)
#data_arrays = [middles_ratios_04, middles_ratios_003]
#analyze_fermicircle.plot_ratio_on_unshifted(data_arrays, [[0.06, 0.4], [0.03, 0.4]])
#middle_ratios = analyze_fermicircle.convert_to_middles_ratios(k_vectors[0], emission_points[0], lower, upper, nbins, e_fermi)
#analyze_fermicircle.plot_ratio_on_unshifted([middle_ratios])
#plotfunc.histogram_plot_cart(emission_points, n_phonon, binwidth, source, drain, f_list, bound)
#plotfunc.save_inverse_mfp_data(f_list, inverse_mfp, "aug_11_inverse_mfp")