-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwarmup_lr_scheduler.py
62 lines (55 loc) · 2.22 KB
/
warmup_lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# MIT License
#
# Copyright (c) 2021 Soohwan Kim
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
from typing import Optional
from torch.optim import Optimizer
from lr_scheduler.lr_scheduler import LearningRateScheduler
class WarmupLRScheduler(LearningRateScheduler):
"""
Warmup learning rate until `total_steps`
Args:
optimizer (Optimizer): wrapped optimizer.
"""
def __init__(
self,
optimizer: Optimizer,
init_lr: float,
peak_lr: float,
warmup_steps: int,
) -> None:
super(WarmupLRScheduler, self).__init__(optimizer, init_lr)
self.init_lr = init_lr
if warmup_steps != 0:
warmup_rate = peak_lr - init_lr
self.warmup_rate = warmup_rate / warmup_steps
else:
self.warmup_rate = 0
self.update_steps = 1
self.lr = init_lr
self.warmup_steps = warmup_steps
def step(self, val_loss: Optional[torch.FloatTensor] = None):
if self.update_steps < self.warmup_steps:
lr = self.init_lr + self.warmup_rate * self.update_steps
self.set_lr(self.optimizer, lr)
self.lr = lr
self.update_steps += 1
return self.lr