-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patha2c.py
99 lines (81 loc) · 4.84 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import yfinance as yf
import numpy as np
import pandas as pd
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
import matplotlib.pyplot as plt
import torch
import ta
# classification of stocks based on https://www.nasdaq.com/solutions/nasdaq-100/companies#utilities
consumer_discretionary = ["AMZN", "CPRT", "SBUX", "PAYX", "MNST"]
consumer_staples = ["PEP", "KHC", "WBA", "CCEP", "MDLZ"]
health_care = ["AMGN", "VRTX", "ISRG", "MRNA", "ILMN"]
industrial = ["CSX", "BKR", "AAPL", "ROP", "HON"]
technology = ["QCOM", "MSFT", "INTC", "MDB", "GOOG"]
telecommunications = ["CMCSA", "WBD", "CSCO", "TMUS", "AEP"]
utilities = ["XEL", "EXC", "PCG", "SRE", "OGE"]
all_stocks = consumer_discretionary + consumer_staples + health_care + industrial + technology + telecommunications + utilities
print(all_stocks)
def add_TI(stock_data):
stock_data['SMA'] = ta.trend.sma_indicator(stock_data['Close'], window=14) # Trend Indicators
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14) # Momentum Indicators
stock_data['OBV'] = ta.volume.on_balance_volume(stock_data['Close'], stock_data['Volume']) # Volume Indicators
stock_data['ATR_14'] = ta.volatility.average_true_range(stock_data['High'], stock_data['Low'], stock_data['Close'], window=14) # Volatility Indicators
stock_data['CCI_20'] = ta.trend.cci(stock_data['High'], stock_data['Low'], stock_data['Close'], window=20) # Commodity Channel Index : An oscillator used to identify cyclical trends in commodities.
stock_data.dropna(inplace=True)
return stock_data
class StockEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self, stock_symbols, window_size, start_date, end_date, render_mode=None):
super(StockEnv, self).__init__()
self.start_date = start_date
self.end_date = end_date
self.stock_symbols = stock_symbols
self.current_symbol = np.random.choice(self.stock_symbols)
self.stock_data = add_TI(yf.download(self.current_symbol, start=self.start_date, end=self.end_date))
self.window_size = window_size
self.current_step = window_size
self.action_space = gym.spaces.Discrete(3) # Actions : Buy (0), Sell (1), Hold (2)
self.observation_space = gym.spaces.Box(low=0, high=np.inf, shape=(window_size, 10), dtype=np.float64) # Observation space is the stock data of the last 'window_size' days
# Initial portfolio
self.initial_balance = 10000
self.current_balance = self.initial_balance
self.shares_held = 0
self.current_portfolio_value = self.current_balance
def reset(self):
self.current_symbol = np.random.choice(self.stock_symbols)
print(f"\n{self.current_symbol}\n")
self.stock_data = add_TI(yf.download(self.current_symbol, start=self.start_date, end=self.end_date))
self.current_step = self.window_size
self.current_balance = self.initial_balance
self.shares_held = 0
self.current_portfolio_value = self.current_balance
return self._next_observation()
def _next_observation(self):
frame = self.stock_data.iloc[self.current_step-self.window_size:self.current_step].copy()
return frame[['Open', 'High', 'Low', 'Close', 'Volume', 'SMA', 'RSI', 'OBV', 'ATR_14', 'CCI_20']].values
def step(self, action):
self.current_step += 1
done = self.current_step >= len(self.stock_data) - 1
reward = 0
current_price = self.stock_data.iloc[self.current_step]['Close']
if action == 0: # Buy
if self.current_balance >= current_price: # Can buy only if there is enough balance
self.shares_held += 1
self.current_balance -= current_price
elif action == 1: # Sell
if self.shares_held > 0: # Can sell only if shares are held
self.shares_held -= 1
self.current_balance += current_price
self.current_portfolio_value = self.current_balance + self.shares_held * current_price
reward = self.current_portfolio_value - self.initial_balance
return self._next_observation(), reward, done, {}
def render(self, mode='human', close=False):
print(f'Step: {self.current_step}, Action: {action}, Balance: {self.current_balance}, Shares held: {self.shares_held}, Current Portfolio Value: {self.current_portfolio_value}')
portfolio_value.append(self.current_portfolio_value)
vec_env = make_vec_env(lambda: env, n_envs=1)
a2c_model = A2C('MlpPolicy', vec_env, verbose=1, learning_rate=1e-3, n_steps=5, gamma=0.99, gae_lambda=1.0, ent_coef=0.0, vf_coef=0.5, max_grad_norm=0.5, use_rms_prop=True, use_sde=False, sde_sample_freq=-1, normalize_advantage=False, tensorboard_log="./a2c_tensorboard/")
log_path = './a2c_tensorboard/run1'
a2c_model.learn(total_timesteps=1_000_000, tb_log_name=log_path)
a2c_model.save('a2c_stock_1M')