-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
396 lines (312 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from __future__ import print_function
#%matplotlib inline
import argparse
import os
import time
import datetime
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torch.autograd as autograd
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import torchvision
from src.utils import *
import src.losses as losses
import torch.nn.functional as F
from anom_utils import post_process, generate_image, reconstruction_loss, latent_reconstruction_loss
from anom_utils import l1_latent_reconstruction_loss, anomaly_score, score_and_auc, score_and_auc_sep, ood_aucs
from torchvision.utils import save_image
from torch.optim.lr_scheduler import MultiStepLR
import wandb
import data
from newevaluate import evaluate
from cifar_models_bNorm import Encoder,Res_Discriminator, ResnetDiscriminator32, ResnetGenerator32
matplotlib.rc("text", usetex=False)
parser = argparse.ArgumentParser()
parser.add_argument('--manualSeed', type = int, default=5, help='set the seed for the model manually')
parser.add_argument('--dataroot', default = "./data/CIFAR10/",
help='Location of the data')
parser.add_argument('--dataset', default='cifar10', help='name of the dataset we are working with')
parser.add_argument('--anom_pc',type = float ,default = 0, help='percentage of each anomaly class to use in training')
parser.add_argument('--batchsize', type = int, default=256, help='train/val batchsize')
parser.add_argument('--val_split', type = float, default=0.05, help='%of train data to split into val data')
parser.add_argument('--image_size', type = int, default= 32, help='size of training images')
parser.add_argument('--num_channels', type = int, default=3, help='number of channels')
parser.add_argument('--ngpu', type = int, default=1, help='number of GPUs available')
parser.add_argument('--workers', type = int, default=4, help='number of worker CPU nodes')
parser.add_argument('--abnormal_classes', default=None, help='name of the abnormal class, changes based on the dataset')
parser.add_argument('--normal_class', default=None, help='name of the normal class, changes based on the dataset')
parser.add_argument('--lr',type = float ,default = 3e-4)
parser.add_argument('--nz',type = int ,default = 128)
parser.add_argument('--model_load_path',default = '', help='path to trained model, otherwise the model will train from scratch')
parser.add_argument('--cuda',type= int, default = 0)
parser.add_argument('--recon_loss_type',type = str, default = 'wasserstein', help = 'loss type to be used in reconstruction discriminator')
parser.add_argument('--ae_recon_loss_type',type = str, default = 'wasserstein', help = 'loss type to be used in AE update')
parser.add_argument('--num_epochs',type = int, default = 100, help = 'number of training epochs')
parser.add_argument('--start', type=int, default = 0)
parser.add_argument('--use_penalty', action = 'store_true')
parser.add_argument('--ch', type=int,default = 128)
parser.add_argument('--update_ratio', type=int,default = 5, help='number of discriminator updates to generator update')
parser.add_argument('--save_model_epochs',type = int, default = 30, help='save the model after this many epochs')
parser.add_argument('--save_logs_epochs',type = int, default = 1, help='save the model after this many epochs')
parser.add_argument('--save_model_root', default = "logs",
help='Location to save the model wrt train file')
parser.add_argument('--anom_recon_lambda',type = float, default = 1, help='anomaly loss reconstruction hyperparameter')
parser.add_argument('--regularizer_lambda',type = float, default = 1, help='regularization term hyperparameter')
parser.add_argument('--gp_lambda',type = float, default = 10, help='gradient penalty hyperparameter')
parser.add_argument('--spectral_norm', type=int, default = 0 , help='whether to use spectral norm in reconstruction Discriminator')
parser.add_argument('--anom_metric_type', type=str, default = 'f_anomloss', help='anomloss|l1_mean_recon')
parser.add_argument('--augment', action = 'store_true')
parser.add_argument('--ood_model', action = 'store_true')
parser.add_argument('--learning_setting', type=str, default = 'ss', help='ss|unsupervised - if unsupervised that anompc fraction of anomalies get mistagged as normals')
parser.add_argument('--interpolation_in_recon', action = 'store_true')
parser.add_argument('--expt_name', type=str, default = 'temp', help='Any specific name to the expt?')
parser.add_argument('--corruption',type = float, default = 0, help='percentage corruption of anomalous labels in training data')
parser.add_argument('--ip_lambda',type = float, default = 0.2, help='interpolation hyperparameter hyperparameter')
parser.add_argument('--sampling', action = 'store_true')
parser.add_argument('--corrup', action = 'store_true')
parser.add_argument('--atyp_selec_style', type=str, default = 'inward', help='inward|outward|sipple')
parser.add_argument('--atyp_ratio', type=float, default = 0.5, help='How far from the annulus we want to sample for anomalies')
opt = parser.parse_args()
if opt.interpolation_in_recon:
from interpolation import recon_discriminator_loss, recon_loss_joint
rc = 'interpol_'
else:
from loss import recon_discriminator_loss, recon_loss_joint
rc=''
date = str(datetime.datetime.now())
date = date[:date.rfind(":")].replace("-", "")\
.replace(":", "")\
.replace(" ", "_")
if opt.augment:
ag = 'augment_'
else:
ag=''
if opt.ood_model:
cf = 'ood'
else:
cf = opt.normal_class
runname = str(opt.expt_name+'_' + rc + cf) + '_' + str(opt.anom_recon_lambda)+ 'anomlamb_'+ date
if opt.dataset == 'cifar10':
wandb.init(project="cifar10", name=runname, group=opt.expt_name)
model_check_epoch = 20
all_classes = ['airplane','automobile','bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
else:
print('Unknown dataset!')
raise
wandb.config.update(opt)
print("Chosen Seed: ", opt.manualSeed)
torch.manual_seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
#size of generator feature maps
ngf = opt.image_size
#size of discriminator feature maps
ndf = opt.image_size
#num of GPUs available
ngpu = opt.ngpu
#Number of discriminator updates per generator update
tfd = opt.update_ratio
# save images, histograms every __ epochs
save_rate_logs = opt.save_logs_epochs
save_rate_model = opt.save_model_epochs
best_auc = 0
best_epoch=1
best_anomscore = 10e10
print(opt)
#loading the data
b_size = opt.batchsize
if opt.abnormal_classes is not None:
anom_classes = eval(opt.abnormal_classes)
elif opt.normal_class is not None:
norm_class = eval(opt.normal_class)
anom_classes = list(set(all_classes) - set(norm_class))
else:
anom_classes = None
print('We are in OOD expt')
dataset_train, dataset_valid, dataset_test = data.load_data(dataset = opt.dataset, ood = opt.ood_model, anom_classes = anom_classes,anom_ratio=opt.anom_pc,corruption= opt.corruption, seed = opt.manualSeed, augmentation = opt.augment, learning_setting= opt.learning_setting, valid_split = opt.val_split)
trainloader = torch.utils.data.DataLoader(dataset_train, batch_size=b_size,
drop_last = True,
shuffle = True, num_workers=opt.workers)
validloader = torch.utils.data.DataLoader(dataset_valid, batch_size=b_size,
shuffle = False, num_workers=opt.workers)
testloader = torch.utils.data.DataLoader(dataset_test, batch_size=b_size,
shuffle = False, num_workers=opt.workers)
lr = opt.lr
##creating folders to save the models and logs
imgroot = os.path.join('newlogs',runname, 'image' )
saveModelRoot = os.path.join('newlogs',runname, 'model' )
print(imgroot)
print(saveModelRoot)
try:
os.makedirs(saveModelRoot)
except OSError:
print("Model folder already exists")
try:
os.makedirs(imgroot)
except OSError:
print_function("Image folder already exists")
#set the device
device = torch.device("cuda:%s" % (opt.cuda) if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
#define the models
# netE is the encoder, netG is the Generator and netD2 is the reconstruction discriminator
netE = Encoder(ngpu=1,nz=opt.nz, nc = opt.num_channels,ndf = ndf)
netG = ResnetGenerator32(z_dim = opt.nz)
netD2 = ResnetDiscriminator32(stack = 2*opt.num_channels , ch= opt.ch, spectral_norm=opt.spectral_norm)
netE.to(device)
netG.to(device)
if netD2 is not None:
netD2.to(device)
optimizerD2 = optim.Adam(netD2.parameters(), lr = lr, betas = (0, .9))
optimizerG = optim.Adam(netG.parameters(), lr = lr, betas = (0, .9))
optimizerE = optim.Adam(netE.parameters(), lr = lr, betas = (.5, .9))
schedulerD2 = MultiStepLR(optimizerD2, milestones=[30,60,90], gamma=0.1)
schedulerG = MultiStepLR(optimizerG, milestones=[30,60,90], gamma=0.1)
schedulerE = MultiStepLR(optimizerE, milestones=[30,60,90], gamma=0.1)
start = opt.start
print("Starting Training")
print('start from %s ' % start)
n_iter = 0
starttime = time.time()
if(opt.model_load_path==''):
for epoch in range(start,opt.num_epochs):
netE.train()
if netD2 is not None:
netD2.train()
netG.train()
for i, data in enumerate(trainloader, 0):
n_iter = n_iter + 1
imgs = data[0].to(device)
labels = data[1].to(device)
real_idx = ((labels > 0).nonzero()).squeeze(1)
anom_idx = ((labels < 0).nonzero()).squeeze(1)
if opt.corrup:
labels[anom_idx] = 1
if opt.anom_pc==0 or opt.corrup:
if opt.sampling and epoch > 10:
netE.eval() ; netG.eval()
anom_count = int(0.1*len(labels))
anom_idx = np.random.choice(range(len(labels)), anom_count)
labels[anom_idx] = -1
alpha = torch.FloatTensor(anom_count, 1).uniform_(0, opt.atyp_ratio).to(device)
z = torch.zeros([anom_count, opt.nz], dtype=torch.float32, device=device )
with torch.no_grad():
if opt.atyp_selec_style == 'inward':
e = (1-alpha)*z + (alpha)*netE(imgs[anom_idx]).detach()
elif opt.atyp_selec_style == 'outward':
k = netE(imgs[anom_idx]).detach()
e = (k - (1-alpha)*z)/alpha
elif opt.atyp_selec_style == 'sipple':
e = torch.Tensor(torch.rand(anom_count,opt.nz)*(torch.min(torch.abs(netE(imgs))))).to(device).detach()
else:
print('Unknown Negative Sampling style!')
raise
imgs[anom_idx] = netG(e).detach()
netE.train() ; netG.train()
else:
real = imgs[real_idx]
anom = imgs[anom_idx]
real_labels = labels[real_idx]
# optimize discriminator tfd times
for t in range(tfd):
netE.zero_grad()
netG.zero_grad()
if netD2 is not None:
netD2.zero_grad()
netE.zero_grad()
netG.zero_grad()
errD_recon = recon_discriminator_loss(imgs,labels, netD2, netE, netG,losstype =opt.recon_loss_type,anom_lambda=opt.anom_recon_lambda, use_penalty=opt.use_penalty, gradp_lambda = opt.gp_lambda,ip_lambda=opt.ip_lambda)
errD_recon.backward()
optimizerD2.step()
else:
errD_recon = 0
reg_term = (torch.norm(netE(imgs[labels==1]), dim = (1))).mean()
if netD2 is not None:
recon_loss_encoded = recon_loss_joint(imgs, labels,netG, netE, netD2, loss_type = opt.ae_recon_loss_type,anom_lambda=opt.anom_recon_lambda,ip_lambda=opt.ip_lambda )
else:
recon_loss_encoded = recon_loss_joint(imgs, labels,netG, netE, netD2, loss_type = 'l1',
anom_lambda=opt.anom_recon_lambda,ip_lambda=opt.ip_lambda )
errG = recon_loss_encoded + opt.regularizer_lambda*reg_term
netG.zero_grad()
netE.zero_grad()
if netD2 is not None:
netD2.zero_grad()
errG.backward()
optimizerG.step()
optimizerE.step()
wb_iter = len(trainloader)*epoch + n_iter
wandb.log({'epoch': epoch,'iteration':wb_iter ,
'loss_Drecon':errD_recon, 'loss_AE': errG, 'reconloss_inAE':recon_loss_encoded, 'reg_term':reg_term})
if i % 50 == 0:
print('[%d/%d][%d/%d]'
%(epoch, opt.num_epochs, i, len(trainloader)))
### validating and saving area ###
if epoch % save_rate_logs == 0:
netE.eval()
if netD2 is not None:
netD2.eval()
netG.eval()
with torch.no_grad():
# calculating auroc,auprc on test dataset. test_norm_auc is the auc according to proposed anomaly score.
_, overall_test_score, real_test_score, anom_test_score, test_auprc, test_dis_auc,test_norm_auc = score_and_auc_sep(testloader,trainloader ,netG, netE, netD2,device ,ngpu, break_iters = 10000,anom_metric_type = opt.anom_metric_type)
print(('test_auc:%f') % test_norm_auc)
_, val_anom_score,_,_, valid_auprc, valid_dis_auc,valid_norm_auc = score_and_auc_sep(validloader,trainloader, netG, netE, netD2, device,ngpu, break_iters = 50,anom_metric_type= opt.anom_metric_type)
print(('train_score:%f') % val_anom_score)
wandb.log({'overall_test_score':overall_test_score,
'real_test_score':real_test_score, 'anom_test_score':anom_test_score ,
'valid_anom_mean': val_anom_score, 'test_dis_auc': test_dis_auc,
'valid_dis_auc' : valid_dis_auc, 'test_norm_auc':test_norm_auc,
'valid_norm_auc':valid_norm_auc})
with open(os.path.join(imgroot, "epoch_losses.txt"), "a") as f:
currenttime = time.time()
elapsed = currenttime - starttime
f.write("{} \t {:.2f}\t {:.5f}\t {:.5f}\t {:.5f}\t {:.5f}".format(epoch, elapsed, test_norm_auc, test_auprc, overall_test_score,valid_norm_auc, valid_auprc ,val_anom_score) + "\n")
starttime = time.time()
# save images
output = None
for i,data in enumerate(testloader, 0):
targets = data[1].to(device)
test = data[0][:64,:,:,:].to(device)
row = torch.cat((test,netG(netE(test))), dim=2)
if output is None:
output = row
else:
output = torch.cat((output, row), dim=1)
save_image(output, os.path.join(imgroot, "img-{}.png".format(epoch)))
wandb.log({"reconstructions": [wandb.Image(output, caption="{}".format(epoch))]})
break
best_anomscore
if epoch >= model_check_epoch:
if valid_norm_auc > best_auc:
best_auc = valid_norm_auc
best_epoch = epoch
best_model = True
else:
best_model = False
if epoch>= model_check_epoch and best_model:
wandb.run.summary["best_valid_auc"] = valid_norm_auc
wandb.run.summary["best_epoch"] = epoch
wandb.run.summary["test_auc_atbestvalid"] = test_norm_auc
print('Best_model_epoch:%d, Best val auc:%f' %(best_epoch,best_auc))
torch.save(netG.state_dict(),'%s/netbestG.pth' % (saveModelRoot))
torch.save(netE.state_dict(),'%s/netbestE.pth' % (saveModelRoot))
if netD2 is not None:
torch.save(netD2.state_dict(),'%s/netbestD2.pth' % (saveModelRoot))
if epoch % save_rate_model == 0:
torch.save(netG.state_dict(),'%s/netG_%s.pth' % (saveModelRoot, epoch))
torch.save(netE.state_dict(),'%s/netE_%s.pth' % (saveModelRoot,epoch))
if netD2 is not None:
torch.save(netD2.state_dict(),'%s/netD2_%s.pth' % (saveModelRoot,epoch))
schedulerD2.step()
schedulerG.step()
schedulerE.step()