-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsflib.v
965 lines (798 loc) · 37.6 KB
/
sflib.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
(* *********************************************************************)
(* *)
(* Software Foundations Laboratory's Lemmas & Tactic *)
(* based on Viktor and Gil's lemmas & tactic *)
(* *)
(* *********************************************************************)
(** This file collects a number of basic lemmas and tactics for better
proof automation, structuring large proofs, or rewriting. Most of
the rewriting support is ported from ssreflect. *)
(** Symbols starting with [sflib__] are internal. *)
Require Import Bool List Arith ZArith String Program.
(* Require Export paconotation newtac. *)
Set Implicit Arguments.
#[export] Hint Unfold not iff id: core.
Export ListNotations.
(* Notation "~ x" := (forall (FH: x), False) : type_scope. *)
(* Function composition *)
Notation "f <*> g" := (compose f g) (at level 49, left associativity).
(* ************************************************************************** *)
(** * Coersion of [bool] into [Prop] *)
(* ************************************************************************** *)
(** Coersion of bools into Prop *)
Coercion is_true (b : bool) : Prop := b = true.
(** Hints for auto *)
Lemma sflib__true_is_true : true.
Proof. reflexivity. Qed.
Lemma sflib__not_false_is_true : ~ false.
Proof. discriminate. Qed.
Lemma sflib__negb_rewrite: forall {b}, negb b -> b = false.
Proof. intros []; (reflexivity || discriminate). Qed.
Lemma sflib__andb_split: forall {b1 b2}, b1 && b2 -> b1 /\ b2.
Proof. intros [] []; try discriminate; auto. Qed.
#[export] Hint Resolve sflib__true_is_true sflib__not_false_is_true: core.
(* ************************************************************************** *)
(** * Basic automation tactics *)
(* ************************************************************************** *)
(** Set up for basic simplification *)
Create HintDb sflib discriminated.
(** Adaptation of the ss-reflect "[done]" tactic. *)
Ltac sflib__basic_done :=
solve [trivial with sflib | apply sym_equal; trivial | discriminate | contradiction].
Ltac done := unfold not in *; trivial with sflib; hnf; intros;
solve [try sflib__basic_done; split;
try sflib__basic_done; split;
try sflib__basic_done; split;
try sflib__basic_done; split;
try sflib__basic_done; split; sflib__basic_done
| match goal with H : _ -> False |- _ => solve [case H; trivial] end].
(** A variant of the ssr "done" tactic that performs "eassumption". *)
Ltac edone := try eassumption; trivial; hnf; intros;
solve [try eassumption; try sflib__basic_done; split;
try eassumption; try sflib__basic_done; split;
try eassumption; try sflib__basic_done; split;
try eassumption; try sflib__basic_done; split;
try eassumption; try sflib__basic_done; split;
try eassumption; sflib__basic_done
| match goal with H : ~ _ |- _ => solve [case H; trivial] end].
Tactic Notation "by" tactic(tac) := (tac; done).
Tactic Notation "eby" tactic(tac) := (tac; edone).
Ltac sflib__complaining_inj f H :=
let X := fresh in
(match goal with | [|- ?P ] => set (X := P) end);
injection H;
(lazymatch goal with | [ |- f _ = f _ -> _] => fail | _ => idtac end);
clear H; intros;
subst X;
try subst.
Ltac sflib__clarify1 :=
try subst;
repeat match goal with
| [H: is_true (andb _ _) |- _] => case (sflib__andb_split H); clear H; intros ? H
| [H: is_true (negb ?x) |- _] => rewrite (sflib__negb_rewrite H) in *
| [H: is_true ?x |- _] => rewrite H in *
| [H: ?x = true |- _] => rewrite H in *
| [H: ?x = false |- _] => rewrite H in *
| [H: ?f _ = ?f _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ = ?f _ _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ _ = ?f _ _ _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ _ _ = ?f _ _ _ _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ _ _ _ = ?f _ _ _ _ _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ _ _ _ _ = ?f _ _ _ _ _ _ |- _] => sflib__complaining_inj f H
| [H: ?f _ _ _ _ _ _ _ = ?f _ _ _ _ _ _ _ |- _] => sflib__complaining_inj f H
end; try done.
(** Perform injections & discriminations on all hypotheses *)
Ltac clarify :=
sflib__clarify1;
repeat match goal with
| H1: ?x = Some _, H2: ?x = None |- _ => rewrite H2 in H1; sflib__clarify1
| H1: ?x = Some _, H2: ?x = Some _ |- _ => rewrite H2 in H1; sflib__clarify1
end.
(** Kill simple goals that require up to two econstructor calls. *)
(* from CompCert-2.4/lib/Coqlib.v *)
Ltac inv H := inversion H; clear H; subst.
Ltac hinv x := move x at bottom; inversion x; clarify.
Tactic Notation "hinv" ident(a) :=
(hinv a).
Tactic Notation "hinv" ident(a) ident(b) :=
(hinv a; hinv b).
Tactic Notation "hinv" ident(a) ident(b) ident(c) :=
(hinv a; hinv b c).
Tactic Notation "hinv" ident(a) ident(b) ident(c) ident(d) :=
(hinv a b; hinv c d).
Ltac hinvc x := hinv x; clear x.
Tactic Notation "hinvc" ident(a) :=
(hinvc a).
Tactic Notation "hinvc" ident(a) ident(b) :=
(hinvc a; hinvc b).
Tactic Notation "hinvc" ident(a) ident(b) ident(c) :=
(hinvc a; hinvc b c).
Tactic Notation "hinvc" ident(a) ident(b) ident(c) ident(d) :=
(hinvc a b; hinvc c d).
Tactic Notation "hinvc" ident(a) ident(b) ident(c) ident(d) ident(e) :=
(hinvc a b c; hinvc d e).
Ltac simpls := simpl in *; try done.
Ltac ins := simpl in *; try done; intros.
Tactic Notation "case_eq" constr(x) := case_eq (x).
Tactic Notation "case_eq" constr(x) "as" simple_intropattern(H) :=
destruct x as [] eqn: H; try done.
(* ************************************************************************** *)
(** * Basic simplication tactics *)
(* ************************************************************************** *)
Ltac sflib__clarsimp1 :=
clarify; (autorewrite with sflib in * ); try done;
match goal with
| [H: is_true ?x |- _] => rewrite H in *; sflib__clarsimp1
| [H: ?x = true |- _] => rewrite H in *; sflib__clarsimp1
| [H: ?x = false |- _] => rewrite H in *; sflib__clarsimp1
| _ => clarify; auto 1 with sflib
end.
Ltac clarsimp := intros; simpl in *; sflib__clarsimp1.
Ltac autos := clarsimp; auto with sflib.
(* hdesH, hdes: more general des *)
Definition NW A (P: () -> A) : A := P ().
Notation "<< x : t >>" := (NW (fun x => (t):Prop)) (at level 80, x name, no associativity).
Notation "<< t >>" := (NW (fun _ => t)) (at level 79, no associativity, only printing).
Notation "<< t >>" := (NW (fun _ => (t):Prop)) (at level 79, no associativity, only printing).
Ltac unnw := unfold NW in *.
Ltac rednw := red; unnw.
#[export] Hint Unfold NW: core.
Ltac get_concl := lazymatch goal with [ |- ?G ] => G end.
Ltac des1 :=
match goal with
| H : NW _ |- _ => red in H
| H : exists x, NW (fun y => _) |- _ =>
let x' := fresh x in let y' := fresh y in destruct H as [x' y']; red in y'
| H : exists x, ?p |- _ =>
let x' := fresh x in destruct H as [x' H]
| H : ?p /\ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => red in x' | _ => idtac end;
match q with | NW _ => red in y' | _ => idtac end
| H : ?p <-> ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => unfold NW at 1 in x'; red in y' | _ => idtac end;
match q with | NW _ => unfold NW at 1 in y'; red in x' | _ => idtac end
| H : ?p \/ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => H end in
destruct H as [x' | y'];
[ match p with | NW _ => red in x' | _ => idtac end
| match q with | NW _ => red in y' | _ => idtac end]
end.
Ltac des := repeat des1.
Ltac desc :=
repeat match goal with
| H : exists x, NW (fun y => _) |- _ =>
let x' := fresh x in let y' := fresh y in destruct H as [x' y']; red in y'
| H : exists x, ?p |- _ =>
let x' := fresh x in destruct H as [x' H]
| H : ?p /\ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => red in x' | _ => idtac end;
match q with | NW _ => red in y' | _ => idtac end
| H : is_true (_ && _) |- _ =>
let H' := fresh H in case (sflib__andb_split H); clear H; intros H H'
| H : ?x = ?x |- _ => clear H
end.
Ltac nbdes1 :=
match goal with
| H : NW _ |- _ => red in H
| H : exists x, NW (fun y => _) |- _ =>
let x' := fresh x in let y' := fresh y in destruct H as [x' y']; red in y'
| H : exists x, ?p |- _ =>
let x' := fresh x in destruct H as [x' H]
| H : ?p /\ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => red in x' | _ => idtac end;
match q with | NW _ => red in y' | _ => idtac end
| H : ?p <-> ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => unfold NW at 1 in x'; red in y' | _ => idtac end;
match q with | NW _ => unfold NW at 1 in y'; red in x' | _ => idtac end
(* | H : ?p \/ ?q |- _ => *)
(* let x' := match p with | NW (fun z => _) => fresh z | _ => H end in *)
(* let y' := match q with | NW (fun z => _) => fresh z | _ => H end in *)
(* destruct H as [x' | y']; *)
(* [ match p with | NW _ => red in x' | _ => idtac end *)
(* | match q with | NW _ => red in y' | _ => idtac end] *)
end.
Ltac nbdes := repeat nbdes1.
Ltac rrnbdes H := move H at bottom; repeat red in H; nbdes.
Ltac forall_split :=
let H := fresh "__forall_split__" in first [intro; forall_split; match goal with [H:_|-_] => revert H end | split].
Definition _HID_ (A : Type) (a : A) := a.
Ltac hdesHi H P x y :=
let FF := fresh "__hdesfalse__" in
let TMP := fresh "__hdesHi__" in
let P1 := fresh "__hdesHi__" in
let P2 := fresh "__hdesHi__" in
evar (P1 : Prop); evar (P2 : Prop);
assert (TMP: False -> P) by
(intro FF; forall_split;
[ let G := get_concl in set (TMP := G); revert P1; instantiate (1:=G)
| let G := get_concl in set (TMP := G); revert P2; instantiate (1:=G) ];
destruct FF);
try clear TMP;
try (try (match goal with [Def := ?G : _ |- _] =>
match Def with P1 =>
match goal with [_ : G |- _] => fail 4 end end end);
assert (x: P1) by (unfold P1; repeat (let x := fresh "__xhj__" in intro x; specialize (H x)); apply H));
try unfold P1 in x; try clear P1;
try (try (match goal with [Def := ?G : _ |- _] =>
match Def with P2 =>
match goal with [_ : G |- _] => fail 4 end end end);
assert (y: P2) by (unfold P2; repeat (let x := fresh "__xhj__" in intro x; specialize (H x)); apply H));
try unfold P2 in y; try clear P2;
fold (_HID_ P) in H;
try clear H.
Ltac hdesHP H P :=
let H' := fresh H in let H'' := fresh H in
match P with
| context[ NW (fun x => _) /\ NW (fun y => _) ] =>
let x' := fresh x in let y' := fresh y in
hdesHi H P x' y'; red in x'; red in y'
| context[ NW (fun x => _) /\ _ ] =>
let x' := fresh x in
hdesHi H P x' H'; red in x'
| context[ _ /\ NW (fun y => _) ] =>
let y' := fresh y in
hdesHi H P H' y'; red in y'
| context[ _ /\ _ ] =>
hdesHi H P H' H''
| context[ NW (fun x => _) <-> NW (fun y => _) ] =>
let x' := fresh x in let y' := fresh y in
hdesHi H P x' y'; red in x'; red in y'
| context[ NW (fun x => _) <-> _ ] =>
let x' := fresh x in
hdesHi H P x' H'; red in x'
| context[ _ <-> NW (fun y => _) ] =>
let y' := fresh y in
hdesHi H P H' y'; red in y'
| context[ _ <-> _ ] =>
hdesHi H P H' H''
end.
Ltac hdesH H := let P := type of H in hdesHP H P; unfold _HID_ in *.
(*
(* It works, but too slows *)
Ltac hdesF P :=
match P with
| fun _ => _ /\ _ => idtac
| fun _ => _ <-> _ => idtac
| fun x => forall y : @?ty x, @?f x y =>
let P' := eval cbv beta in (fun p : sigT ty => f (projT1 p) (projT2 p)) in
hdesF P'
end.
Ltac hdes :=
repeat match goal with | H : ?P |- _ => hdesF (fun _ : unit => P); hdesHP H P end;
unfold _HID_ in *.
*)
Ltac hdesF P :=
match P with | _ /\ _ => idtac | _ <-> _ => idtac | forall _, _ =>
match P with | forall _, _ /\ _ => idtac | forall _, _ <-> _ => idtac | forall _ _, _ =>
match P with | forall _ _, _ /\ _ => idtac | forall _ _, _ <-> _ => idtac | forall _ _ _, _ =>
match P with | forall _ _ _, _ /\ _ => idtac | forall _ _ _, _ <-> _ => idtac | forall _ _ _ _, _ =>
match P with | forall _ _ _ _, _ /\ _ => idtac | forall _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ =>
match P with | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ /\ _ => idtac | forall _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _, _ <-> _ => idtac
end end end end end end end end end end end end end end end end end end end end end.
(** Fail if hypothesis [H] doesn't exist. *)
Ltac check_hyp H := match H with _ => idtac end.
(** Fail if hypothesis [H1] is not [H2]. *)
Ltac check_equal H1 H2 := match H1 with H2 => idtac end.
Ltac hdes :=
repeat match goal with | H : ?P |- _ => hdesF P; hdesHP H P end;
unfold _HID_ in *.
Ltac rdes H := red in H; des.
Ltac rrdes H := move H at bottom; repeat red in H; des.
Ltac rhdes H := red in H; hdes.
Ltac rrhdes H := check_hyp H; repeat red in H; hdes.
Tactic Notation "rrdes" ident(a) :=
(rrdes a).
Tactic Notation "rrdes" ident(a) ident(b) :=
(rrdes a; rrdes b).
Tactic Notation "rrdes" ident(a) ident(b) ident(c) :=
(rrdes a; rrdes b c).
Tactic Notation "rrdes" ident(a) ident(b) ident(c) ident(d) :=
(rrdes a b; rrdes c d).
(** Destruct the condition of an [if] expression occuring in the goal. *)
Ltac des_if :=
match goal with
| [ |- context[if ?X then _ else _] ] => destruct X
end.
(* Ltac desE_if := *)
(* match goal with *)
(* | [ |- context[if ?X then _ else _] ] => let E := fresh X in destruct X eqn:E *)
(* end. *)
(** Destruct the condition of an [if] expression occuring in the given hypothesis. *)
Ltac des_ifH H :=
match goal with
| [ H' : context[if ?X then _ else _] |- _ ] => check_equal H' H; destruct X
end.
(* TODO tactics such as these should always do clean at the end to remove junk like [H : x = x] *)
Ltac des_ifs :=
clarify;
repeat
match goal with
| |- context[match ?x with _ => _ end] =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
| H: context[ match ?x with _ => _ end ] |- _ =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
end.
Ltac desf := clarify; des; des_ifs.
Ltac isd := ins; desf.
(** Create a copy of hypothesis [H]. *)
Tactic Notation "dup" hyp(H) :=
let H' := fresh H in assert (H' := H).
(* (** Call tactic [tac] on a copy of [H]. *) *)
(* Tactic Notation "dup" hyp(H) tactic(tac) := *)
(* let H' := fresh H in assert (H' := H); tac H'. *)
Ltac clarassoc := clarsimp; autorewrite with sflib sflibA in *; try done.
Ltac sflib__hacksimp1 :=
clarsimp;
match goal with
| H: _ |- _ => solve [rewrite H; clear H; clarsimp
|rewrite <- H; clear H; clarsimp]
| _ => solve [f_equal; clarsimp]
end.
Ltac hacksimp :=
clarsimp;
try match goal with
| H: _ |- _ => solve [rewrite H; clear H; clarsimp
|rewrite <- H; clear H; clarsimp]
| |- context[if ?p then _ else _] => solve [destruct p; sflib__hacksimp1]
| _ => solve [f_equal; clarsimp]
end.
(* ************************************************************************** *)
(** * Delineating cases in proofs *)
(* ************************************************************************** *)
(** Named case tactics (taken from Libtactics) *)
Tactic Notation "assert_eq" ident(x) constr(v) :=
let H := fresh in
assert (x = v) as H by reflexivity;
clear H.
Tactic Notation "Case_aux" ident(x) constr(name) :=
first [
set (x := name); move x at top
| assert_eq x name
| fail 1 "because we are working on a different case." ].
Ltac Case name := Case_aux case name.
Ltac SCase name := Case_aux subcase name.
Ltac SSCase name := Case_aux subsubcase name.
Ltac SSSCase name := Case_aux subsubsubcase name.
Ltac SSSSCase name := Case_aux subsubsubsubcase name.
(** Lightweight case tactics (without names) *)
Tactic Notation "-" tactic(c) :=
first [
assert (WithinCaseM := True); move WithinCaseM at top
| fail 1 "because we are working on a different case." ]; c.
Tactic Notation "+" tactic(c) :=
first [
assert (WithinCaseP := True); move WithinCaseP at top
| fail 1 "because we are working on a different case." ]; c.
Tactic Notation "*" tactic(c) :=
first [
assert (WithinCaseS := True); move WithinCaseS at top
| fail 1 "because we are working on a different case." ]; c.
Tactic Notation ":" tactic(c) :=
first [
assert (WithinCaseC := True); move WithinCaseC at top
| fail 1 "because we are working on a different case." ]; c.
(* ************************************************************************** *)
(** * Exploiting a hypothesis *)
(* ************************************************************************** *)
(** Exploit an assumption (adapted from CompCert). *)
Tactic Notation "exploit" uconstr(t) :=
refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _ _) _)
|| refine ((fun x y => y x) (t _ _ _) _)
|| refine ((fun x y => y x) (t _ _) _)
|| refine ((fun x y => y x) (t _) _).
(* When 'exploit x' generates too many sub goals, try 'hexploit x' *)
Lemma mp: forall P Q: Type, P -> (P -> Q) -> Q.
Proof. intuition. Defined.
Lemma mp': forall P Q : Type, (P -> Q) -> P -> Q.
Proof. intuition. Qed.
Ltac hexploit x := eapply mp; [eapply x|].
Ltac hexploit' x := let H := fresh in set (H := x); clear H; eapply mp; [eapply x|].
(* set_prop N T A performs 'assert (A : P); [|set (N := T A)]' when T is a term of type (P -> _) *)
Ltac set_prop N T A :=
let b := fresh in let ty := type of T in
match ty with (forall (_:?P), _) => assert (A: P); [|set (N := T A)] end.
(* ************************************************************************** *)
(** * Induction tactics *)
(* ************************************************************************** *)
Tactic Notation "induction" "[" ident_list(y) "]" ident(x) :=
first [ try (intros until x); revert y; induction x
| red; try (intros until x); revert y; induction x ].
Tactic Notation "induction" "[" ident_list(y) "]" ident(x) "[" ident(z) "]" :=
first [ try (intros until x); revert y; induction x; destruct z
| red; try (intros until x); revert y; induction x; destruct z ].
(** Versions with hacksimp *)
Tactic Notation "induct" ident(x) := induction x; hacksimp.
Tactic Notation "induct" ident(x) "[" ident(z) "]" :=
induction x; destruct z; hacksimp.
Tactic Notation "induct" "[" ident_list(y) "]" ident(x) :=
first [ try (intros until x); revert y; induction x; hacksimp
| red; try (intros until x); revert y; induction x; hacksimp ].
Tactic Notation "induct" "[" ident_list(y) "]" ident(x) "[" ident(z) "]" :=
first [ try (intros until x); revert y; induction x; destruct z; hacksimp
| red; try (intros until x); revert y; induction x; destruct z; hacksimp ].
Tactic Notation "edestructs" ident(a) :=
(edestruct a).
Tactic Notation "edestructs" ident(a) ident(b) :=
(edestruct a; edestruct b).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) :=
(edestruct a; edestructs b c).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) :=
(edestruct a; edestructs b c d).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) :=
(edestruct a; edestructs b c d e).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) :=
(edestruct a; edestructs b c d e f).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) :=
(edestruct a; edestructs b c d e f g).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) :=
(edestruct a; edestructs b c d e f g h).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) :=
(edestruct a; edestructs b c d e f g h i).
Tactic Notation "edestructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) ident(j) :=
(edestruct a; edestructs b c d e f g h i j).
Tactic Notation "destructs" ident(a) :=
(destruct a).
Tactic Notation "destructs" ident(a) ident(b) :=
(destruct a; destruct b).
Tactic Notation "destructs" ident(a) ident(b) ident(c) :=
(destruct a; destructs b c).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) :=
(destruct a; destructs b c d).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) :=
(destruct a; destructs b c d e).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) :=
(destruct a; destructs b c d e f).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) :=
(destruct a; destructs b c d e f g).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) :=
(destruct a; destructs b c d e f g h).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) :=
(destruct a; destructs b c d e f g h i).
Tactic Notation "destructs" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) ident(j) :=
(destruct a; destructs b c d e f g h i j).
Tactic Notation "depdes" ident(_something_which_shold_not_occur_in_the_goal_) :=
(let _x_ := type of _something_which_shold_not_occur_in_the_goal_
in dependent destruction _something_which_shold_not_occur_in_the_goal_).
Tactic Notation "depdes" ident(a) ident(b) :=
(depdes a; depdes b).
Tactic Notation "depdes" ident(a) ident(b) ident(c) :=
(depdes a; depdes b c).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) :=
(depdes a; depdes b c d).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) :=
(depdes a; depdes b c d e).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) :=
(depdes a; depdes b c d e f).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) :=
(depdes a; depdes b c d e f g).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) :=
(depdes a; depdes b c d e f g h).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) :=
(depdes a; depdes b c d e f g h i).
Tactic Notation "depdes" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) ident(g) ident(h) ident(i) ident(j) :=
(depdes a; depdes b c d e f g h i j).
Tactic Notation "depgen" ident(x) := generalize dependent x.
(* eappleft, eappright *)
Ltac eappleft H :=
let X := fresh "__lem__" in let X1 := fresh "__lem__" in let X2 := fresh "__lem__" in
assert (X:= H); let P := type of X in hdesHi X P X1 X2;
eapply X1; clear X1 X2.
Ltac eappright H :=
let X := fresh "__lem__" in let X1 := fresh "__lem__" in let X2 := fresh "__lem__" in
assert (X:= H); let P := type of X in hdesHi X P X1 X2;
eapply X2; clear X1 X2.
(* guard for simpl *)
(* for Coq8.4 *)
Definition __guard__ A (a : A) : A := a.
Definition __GUARD__ A (a : A) : A := a.
Arguments __guard__ A a : simpl never.
Arguments __GUARD__ A a : simpl never.
Tactic Notation "guard" constr(t) "in" hyp(H) := fold (__guard__ t) in H.
Tactic Notation "guardH" hyp(H) := let t := type of H in guard t in H.
Tactic Notation "guard" :=
repeat match goal with [H: ?P |- _] =>
try (match P with __guard__ _ => fail 2 end); guardH H
end.
Tactic Notation "sguard" constr(t) "in" hyp(H) := fold (__GUARD__ t) in H.
Tactic Notation "sguard" "in" hyp(H) := let t := type of H in sguard t in H.
Ltac unguard := unfold __guard__ in *.
Ltac unguardH H := unfold __guard__ in H.
Ltac unsguard H := unfold __GUARD__ in H.
Ltac desH H := guard; unguardH H; des; unguard.
Ltac splits :=
intros; unfold NW;
repeat match goal with
| [ |- _ /\ _ ] => split
end.
Ltac esplits :=
intros; unfold NW;
repeat match goal with
| [ |- @ex _ _ ] => eexists
| [ |- _ /\ _ ] => split
| [ |- @sig _ _ ] => eexists
| [ |- @sigT _ _ ] => eexists
| [ |- @prod _ _ ] => split
end.
Tactic Notation "replace_all" constr(e) := repeat (
let X := fresh in assert (X: e) by (clarify; eauto; done);
first [rewrite !X | setoid_rewrite X]; clear X).
Lemma all_conj_dist: forall A (P Q: A -> Prop),
(forall a, P a /\ Q a) -> (forall a, P a) /\ (forall a, Q a).
Proof. intros; hdes; eauto. Qed.
(* extensionalities *)
Tactic Notation "extensionalities" :=
repeat let x := fresh in extensionality x.
Tactic Notation "extensionalities" ident(a) :=
(extensionality a).
Tactic Notation "extensionalities" ident(a) ident(b) :=
(extensionality a; extensionality b).
Tactic Notation "extensionalities" ident(a) ident(b) ident(c) :=
(extensionality a; extensionalities b c).
Tactic Notation "extensionalities" ident(a) ident(b) ident(c) ident(d) :=
(extensionality a; extensionalities b c d).
Tactic Notation "extensionalities" ident(a) ident(b) ident(c) ident(d) ident(e) :=
(extensionality a; extensionalities b c d e).
Tactic Notation "extensionalities" ident(a) ident(b) ident(c) ident(d) ident(e) ident(f) :=
(extensionality a; extensionalities b c d e f).
(* short for common tactics *)
(* Deprecated in Coq 8.18 *)
(* Tactic Notation "inst" := instantiate. *)
Tactic Notation "econs" := econstructor.
Tactic Notation "econs" int_or_var(x) := econstructor x.
Tactic Notation "i" := intros.
Tactic Notation "ii" := repeat intro.
Tactic Notation "s" := simpl.
Tactic Notation "s" ident(a) := simpl a.
Tactic Notation "s" constr(t) := simpl t.
Tactic Notation "s" "in" hyp(H) := simpl in H.
Tactic Notation "ss" := simpls.
Tactic Notation "r" := red.
Tactic Notation "r" "in" hyp(H) := red in H.
Tactic Notation "rr" := repeat red.
Tactic Notation "rr" "in" hyp(H) := repeat red in H.
(* running a tactic selectively on subgoals *)
Definition __mark__ A (a : A) : A := a.
Tactic Notation "M" :=
match goal with [|-?G] => fold (__mark__ G) end.
Tactic Notation "Mdo" tactic(tac) :=
first [ try match goal with [|- __mark__ _ ] => fail 2 end | unfold __mark__; tac ].
Tactic Notation "Mskip" tactic(tac) :=
first [ match goal with [|- __mark__ _ ] => unfold __mark__ end | tac ].
Tactic Notation "Mfirst" tactic(main) ";;" tactic(post) :=
main; (Mdo (post; M)); (Mskip post).
(* revert until *)
Ltac on_last_hyp tac :=
match goal with [ H : _ |- _ ] => first [ tac H | fail 1 ] end.
Ltac revert_until id :=
on_last_hyp ltac:(fun id' =>
match id' with
| id => idtac
| _ => revert id' ; revert_until id
end).
Open Scope string_scope.
Open Scope list_scope.
Fixpoint beq_str (s1 s2: string) : bool :=
match s1, s2 with
| "", "" => true
| String a s1', String b s2' => if Ascii.ascii_dec a b then beq_str s1' s2' else false
| _, _ => false
end.
Ltac uf := (autounfold with * in *).
Tactic Notation "patout" constr(z) "in" hyp(a) :=
pattern z in a; match goal with [a:=?f z|-_] => unfold a; clear a; set (a:=f) end.
Ltac clear_upto H :=
repeat (match goal with [Hcrr : _ |- _ ] => first [ check_equal Hcrr H; fail 2
| clear Hcrr ] end).
Definition _Evar_sflib_ (A:Type) (x:A) := x.
(* Deprecated in Coq 8.18 *)
(* Tactic Notation "hide_evar" int_or_var(n) := let QQ := fresh "QQ" in *)
(* hget_evar n; intro; *)
(* lazymatch goal with [ H := ?X |- _] => *)
(* set (QQ := X) in *; fold (_Evar_sflib_ X) in QQ; clear H *)
(* end. *)
Ltac hide_evars :=
repeat match goal with
| [ |- context [?x] ] => is_evar x; set x;
lazymatch goal with [ H := x |- _ ] =>
fold (_Evar_sflib_ x) in H
end
end.
Ltac show_evars :=
repeat match goal with
| [ H := @_Evar_sflib_ _ _ |- _ ] =>
unfold _Evar_sflib_ in H;
unfold H in *;
clear H
end.
Ltac revert1 := match goal with [H: _|-_] => revert H end.
Lemma eqimpl: forall P Q : Prop, P = Q -> P -> Q.
Proof. by i; subst; auto. Qed.
Ltac ginduction H :=
move H at top; revert_until H; induction H.
Tactic Notation "greflgen" constr(t) "as" ident(g) :=
let EQ := fresh "XEQ" in
generalize (eq_refl t); generalize t at -2 as g
; intros ? EQ ?; revert EQ.
Ltac eadmit :=
exfalso; clear; admit.
Ltac special H :=
(* eapply mp; refine (H _). *)
match type of H with
| ?A -> ?B =>
let a := fresh in assert (a: A); [|specialize (H a)]
end.
(** Useful for e.g. [ex @nil]. *)
Ltac ex x := eapply (ex_intro _ (x _)).
Ltac inst_pairs :=
repeat first
[instantiate (9 := (_, _))
|instantiate (8 := (_, _))
|instantiate (7 := (_, _))
|instantiate (6 := (_, _))
|instantiate (5 := (_, _))
|instantiate (4 := (_, _))
|instantiate (3 := (_, _))
|instantiate (2 := (_, _))
|instantiate (1 := (_, _))].
(* Problem: unfold fst doesn't always result in a lambda *)
(* Ltac fold_proj := *)
(* try match goal with |- context[fun _ : ?A * ?B => _] => *)
(* first [fold (@fst A B) | fold (@snd A B)]; fail *)
(* end. *)
(* Ltac fold_projH H := *)
(* match type of H with | context[fun _ : ?A * ?B => _] => *)
(* first [fold (@fst A B) in H | fold (@snd A B) in H]; fail *)
(* end. *)
(* Ltac simpl_proj := *)
(* unfold fst in *; Hdo fold_projH; fold_proj. *)
(* Lemma simpl_fst: forall A (a: A) B (b: B), *)
(* fst (a, b) = a. *)
(* Proof. *)
(* auto. *)
(* Qed. *)
(* Lemma simpl_snd: forall B (b: B) A (a: A), *)
(* snd (a, b) = b. *)
(* Proof. *)
(* auto. *)
(* Qed. *)
Ltac simpl_proj :=
do 5 (simpl (fst (_, _)) in *; simpl (snd (_, _)) in *).
(* ; repeat first [rewrite !simpl_fst | rewrite !simpl_snd] *)
(* ; Hdo (fun H => repeat first [rewrite !simpl_fst in H | rewrite !simpl_snd in H]). *)
Ltac clean :=
repeat match goal with
| H: True |- _
=> clear H
| H: ?x = ?y |- _
=> try (has_evar x; fail 2); try (has_evar y; fail 2);
change x with y in H; clear H
end
; simpl_proj.
(* without the evar check, clean removes equations such as the following:
X : length (getVal ?28711 ?28712 ?28713 ?28714) = S n *)
Tactic Notation "lhs" tactic(tac) :=
match goal with |- ?op ?lhs ?rhs =>
let tmp := fresh in set (tmp := rhs); tac; unfold tmp; clear tmp
end.
(* Variant of lhs that allows prover to combine lhs/rhs tactics in
* tacticals. For example:
* lhs (rewrite blah); rhs (rewrite blah).
* is allowed. lhs fails because the precedence for the tactic
* was higher than the ";" and so tac = rewrite blah; rhs (rewrite blah).
* TODO: Check whether it's safe to override the definition of lhs/rhs.
*)
Tactic Notation "lhs3" tactic3(tac) :=
match goal with |- ?op ?lhs ?rhs =>
let tmp := fresh in set (tmp := rhs); tac; unfold tmp; clear tmp
end.
Tactic Notation "rhs" tactic(tac) :=
match goal with |- ?op ?lhs ?rhs =>
let tmp := fresh in set (tmp := lhs); tac; unfold tmp; clear tmp
end.
(* See the comment for lhs3. *)
Tactic Notation "rhs3" tactic3(tac) :=
match goal with |- ?op ?lhs ?rhs =>
let tmp := fresh in set (tmp := lhs); tac; unfold tmp; clear tmp
end.
(* TODO generalize to hyps *)
(** Execute a tactic only if the goal contains no evars. *)
Tactic Notation "safe" tactic(tac) :=
try match goal with |- ?G => try (has_evar G; fail 2); tac end.
(** Rename a hypothesis to a fresh name. *)
Ltac ren H :=
let X := fresh H in rename H into X.
(* (** Instantiate consecutive evars. *) *)
(* Tactic Notation "insts" constr(terms) := *)
(* Hdo (fun x => instantiate (1 := x)) terms. *)
(* (* TODO this is not very useful after all *) *)
(** Automation using econstructor.
What it does is clear from the definition below. *)
Tactic Notation "econsby" tactic(tac) :=
first [econstructor 1; (by tac)
|econstructor 2; (by tac)
|econstructor 3; (by tac)
|econstructor 4; (by tac)
|econstructor 5; (by tac)
|econstructor 6; (by tac)
|econstructor 7; (by tac)
|econstructor 8; (by tac)
|econstructor 9; (by tac)
|econstructor 10; (by tac)
|econstructor 11; (by tac)
|econstructor 12; (by tac)
|econstructor 13; (by tac)
|econstructor 14; (by tac)
|econstructor 15; (by tac)
|econstructor 16; (by tac)
|econstructor 17; (by tac)
|econstructor 18; (by tac)
|econstructor 19; (by tac)
|econstructor 20; (by tac)
].