-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
659 lines (557 loc) · 24.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
from __future__ import division
# Codes are borrowed from https://github.com/vikasverma1077/manifold_mixup/tree/master/supervised
import os, sys, shutil, time, random
from collections import OrderedDict
sys.path.append('..')
if sys.version_info[0] < 3:
import cPickle as pickle
else:
import _pickle as pickle
import argparse
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.autograd import Variable
from load_data import load_data_subset
from logger import plotting, copy_script_to_folder, AverageMeter, RecorderMeter, time_string, convert_secs2time
import models
from multiprocessing import Pool
model_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='Train Classifier with mixup',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Data
parser.add_argument('--dataset',
type=str,
default='cifar10',
choices=['cifar10', 'cifar100', 'tiny-imagenet-200'],
help='Choose between Cifar10/100 and Tiny-ImageNet.')
parser.add_argument('--data_dir',
type=str,
default='cifar10',
help='file where results are to be written')
parser.add_argument('--root_dir',
type=str,
default='experiments',
help='folder where results are to be stored')
parser.add_argument('--labels_per_class',
type=int,
default=5000,
metavar='NL',
help='labels_per_class')
parser.add_argument('--valid_labels_per_class',
type=int,
default=0,
metavar='NL',
help='validation labels_per_class')
# Model
parser.add_argument('--arch',
metavar='ARCH',
default='wrn28_10',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: wrn28_10)')
parser.add_argument('--initial_channels', type=int, default=64, choices=(16, 64))
# Optimization options
parser.add_argument('--epochs', type=int, default=300, help='number of epochs to train')
parser.add_argument('--train',
type=str,
default='vanilla',
choices=['vanilla', 'mixup', 'mixup_hidden'],
help='mixup layer')
parser.add_argument('--in_batch',
type=str2bool,
default=False,
help='whether to use different lambdas in batch')
parser.add_argument('--mixup_alpha', type=float, help='alpha parameter for mixup')
parser.add_argument('--dropout',
type=str2bool,
default=False,
help='whether to use dropout or not in final layer')
# Puzzle Mix
parser.add_argument('--box', type=str2bool, default=False, help='true for CutMix')
parser.add_argument('--graph', type=str2bool, default=False, help='true for PuzzleMix')
parser.add_argument('--neigh_size',
type=int,
default=4,
help='neighbor size for computing distance beteeen image regions')
parser.add_argument('--n_labels', type=int, default=3, help='label space size')
parser.add_argument('--beta', type=float, default=1.2, help='label smoothness')
parser.add_argument('--gamma', type=float, default=0.5, help='data local smoothness')
parser.add_argument('--eta', type=float, default=0.2, help='prior term')
parser.add_argument('--transport', type=str2bool, default=True, help='whether to use transport')
parser.add_argument('--t_eps', type=float, default=0.8, help='transport cost coefficient')
parser.add_argument('--t_size',
type=int,
default=-1,
help='transport resolution. -1 for using the same resolution with graphcut')
parser.add_argument('--adv_eps', type=float, default=10.0, help='adversarial training ball')
parser.add_argument('--adv_p', type=float, default=0.0, help='adversarial training probability')
parser.add_argument('--clean_lam', type=float, default=0.0, help='clean input regularization')
parser.add_argument('--mp', type=int, default=8, help='multi-process for graphcut (CPU)')
# training
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--decay', type=float, default=0.0001, help='weight decay (L2 penalty)')
parser.add_argument('--schedule',
type=int,
nargs='+',
default=[150, 225],
help='decrease learning rate at these epochs')
parser.add_argument(
'--gammas',
type=float,
nargs='+',
default=[0.1, 0.1],
help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
# Checkpoints
parser.add_argument('--print_freq',
default=100,
type=int,
metavar='N',
help='print frequency (default: 200)')
parser.add_argument('--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start_epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--evaluate',
dest='evaluate',
action='store_true',
help='evaluate model on validation set')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU')
parser.add_argument('--workers',
type=int,
default=2,
help='number of data loading workers (default: 2)')
# random seed
parser.add_argument('--seed', default=0, type=int, help='manual seed')
parser.add_argument('--add_name', type=str, default='')
parser.add_argument('--log_off', type=str2bool, default=False)
parser.add_argument('--job_id', type=str, default='')
args = parser.parse_args()
args.use_cuda = args.ngpu > 0 and torch.cuda.is_available()
# random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.benchmark = True
def experiment_name_non_mnist(dataset=args.dataset,
arch=args.arch,
epochs=args.epochs,
dropout=args.dropout,
batch_size=args.batch_size,
lr=args.learning_rate,
momentum=args.momentum,
decay=args.decay,
train=args.train,
box=args.box,
graph=args.graph,
beta=args.beta,
gamma=args.gamma,
eta=args.eta,
n_labels=args.n_labels,
neigh_size=args.neigh_size,
transport=args.transport,
t_size=args.t_size,
t_eps=args.t_eps,
adv_eps=args.adv_eps,
adv_p=args.adv_p,
in_batch=args.in_batch,
mixup_alpha=args.mixup_alpha,
job_id=args.job_id,
add_name=args.add_name,
clean_lam=args.clean_lam,
seed=args.seed):
'''
function for experiment result folder name.
'''
exp_name = dataset
exp_name += '_arch_' + str(arch)
exp_name += '_train_' + str(train)
exp_name += '_eph_' + str(epochs)
exp_name += '_lr_' + str(lr)
if mixup_alpha:
exp_name += '_m_alpha_' + str(mixup_alpha)
if box:
exp_name += '_box'
if graph:
exp_name += '_graph' + '_n_labels_' + str(n_labels) + '_beta_' + str(
beta) + '_gamma_' + str(gamma) + '_neigh_' + str(neigh_size) + '_eta_' + str(eta)
if transport:
exp_name += '_transport' + '_eps_' + str(t_eps) + '_size_' + str(t_size)
if adv_p > 0:
exp_name += '_adv_' + '_eps_' + str(adv_eps) + '_p_' + str(adv_p)
if in_batch:
exp_name += '_inbatch'
if job_id != None:
exp_name += '_job_id_' + str(job_id)
if clean_lam > 0:
exp_name += '_clean_' + str(clean_lam)
exp_name += '_seed_' + str(seed)
if add_name != '':
exp_name += '_add_name_' + str(add_name)
print('\nexperiement name: ' + exp_name)
return exp_name
def print_log(print_string, log, end='\n'):
'''print log'''
print("{}".format(print_string), end=end)
if log is not None:
if end == '\n':
log.write('{}\n'.format(print_string))
else:
log.write('{} '.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename):
'''save checkpoint'''
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best:
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.learning_rate
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1, )):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
bce_loss = nn.BCELoss().cuda()
bce_loss_sum = nn.BCELoss(reduction='sum').cuda()
softmax = nn.Softmax(dim=1).cuda()
criterion = nn.CrossEntropyLoss().cuda()
criterion_batch = nn.CrossEntropyLoss(reduction='none').cuda()
def train(train_loader, model, optimizer, epoch, args, log, mp=None):
'''train given model and dataloader'''
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mixing_avg = []
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
optimizer.zero_grad()
input = input.cuda()
target = target.long().cuda()
unary = None
noise = None
adv_mask1 = 0
adv_mask2 = 0
# train with clean images
if args.train == 'vanilla':
input_var, target_var = Variable(input), Variable(target)
output, reweighted_target = model(input_var, target_var)
loss = bce_loss(softmax(output), reweighted_target)
# train with mixup images
elif args.train == 'mixup':
# process for Puzzle Mix
if args.graph:
# whether to add adversarial noise or not
if args.adv_p > 0:
adv_mask1 = np.random.binomial(n=1, p=args.adv_p)
adv_mask2 = np.random.binomial(n=1, p=args.adv_p)
else:
adv_mask1 = 0
adv_mask2 = 0
# random start
if (adv_mask1 == 1 or adv_mask2 == 1):
noise = torch.zeros_like(input).uniform_(-args.adv_eps / 255.,
args.adv_eps / 255.)
input_orig = input * args.std + args.mean
input_noise = input_orig + noise
input_noise = torch.clamp(input_noise, 0, 1)
noise = input_noise - input_orig
input_noise = (input_noise - args.mean) / args.std
input_var = Variable(input_noise, requires_grad=True)
else:
input_var = Variable(input, requires_grad=True)
target_var = Variable(target)
# calculate saliency (unary)
if args.clean_lam == 0:
model.eval()
output = model(input_var)
loss_batch = criterion_batch(output, target_var)
else:
model.train()
output = model(input_var)
loss_batch = 2 * args.clean_lam * criterion_batch(output,
target_var) / args.num_classes
loss_batch_mean = torch.mean(loss_batch, dim=0)
loss_batch_mean.backward(retain_graph=True)
unary = torch.sqrt(torch.mean(input_var.grad**2, dim=1))
# calculate adversarial noise
if (adv_mask1 == 1 or adv_mask2 == 1):
noise += (args.adv_eps + 2) / 255. * input_var.grad.sign()
noise = torch.clamp(noise, -args.adv_eps / 255., args.adv_eps / 255.)
adv_mix_coef = np.random.uniform(0, 1)
noise = adv_mix_coef * noise
if args.clean_lam == 0:
model.train()
optimizer.zero_grad()
input_var, target_var = Variable(input), Variable(target)
# perform mixup and calculate loss
output, reweighted_target = model(input_var,
target_var,
mixup=True,
args=args,
grad=unary,
noise=noise,
adv_mask1=adv_mask1,
adv_mask2=adv_mask2,
mp=mp)
loss = bce_loss(softmax(output), reweighted_target)
# for manifold mixup
elif args.train == 'mixup_hidden':
input_var, target_var = Variable(input), Variable(target)
output, reweighted_target = model(input_var, target_var, mixup_hidden=True, args=args)
loss = bce_loss(softmax(output), reweighted_target)
else:
raise AssertionError('wrong train type!!')
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(
top1=top1, top5=top5, error1=100 - top1.avg), log)
return top1.avg, top5.avg, losses.avg
def validate(val_loader, model, log, fgsm=False, eps=4, rand_init=False, mean=None, std=None):
'''evaluate trained model'''
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (input, target) in enumerate(val_loader):
if args.use_cuda:
input = input.cuda()
target = target.cuda()
# check FGSM for adversarial training
if fgsm:
input_var = Variable(input, requires_grad=True)
target_var = Variable(target)
optimizer_input = torch.optim.SGD([input_var], lr=0.1)
output = model(input_var)
loss = criterion(output, target_var)
optimizer_input.zero_grad()
loss.backward()
sign_data_grad = input_var.grad.sign()
input = input * std + mean + eps / 255. * sign_data_grad
input = torch.clamp(input, 0, 1)
input = (input - mean) / std
with torch.no_grad():
input_var = Variable(input)
target_var = Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
if fgsm:
print_log('Attack (eps : {}) Prec@1 {top1.avg:.2f}'.format(eps, top1=top1), log)
else:
print_log(
' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f} Loss: {losses.avg:.3f} '
.format(top1=top1, top5=top5, error1=100 - top1.avg, losses=losses), log)
return top1.avg, losses.avg
best_acc = 0
def main():
# set up the experiment directories
if not args.log_off:
exp_name = experiment_name_non_mnist()
exp_dir = os.path.join(args.root_dir, exp_name)
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
copy_script_to_folder(os.path.abspath(__file__), exp_dir)
result_png_path = os.path.join(exp_dir, 'results.png')
log = open(os.path.join(exp_dir, 'log.txt'.format(args.seed)), 'w')
print_log('save path : {}'.format(exp_dir), log)
else:
log = None
global best_acc
state = {k: v for k, v in args._get_kwargs()}
print("")
print_log(state, log)
print("")
print_log("Random Seed: {}".format(args.seed), log)
print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(torch.backends.cudnn.version()), log)
# dataloader
train_loader, valid_loader, _, test_loader, num_classes = load_data_subset(
args.batch_size,
2,
args.dataset,
args.data_dir,
labels_per_class=args.labels_per_class,
valid_labels_per_class=args.valid_labels_per_class,
mixup_alpha=args.mixup_alpha)
if args.dataset == 'tiny-imagenet-200':
stride = 2
args.mean = torch.tensor([0.5] * 3, dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.std = torch.tensor([0.5] * 3, dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.labels_per_class = 500
elif args.dataset == 'cifar10':
stride = 1
args.mean = torch.tensor([x / 255 for x in [125.3, 123.0, 113.9]],
dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.std = torch.tensor([x / 255 for x in [63.0, 62.1, 66.7]],
dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.labels_per_class = 5000
elif args.dataset == 'cifar100':
stride = 1
args.mean = torch.tensor([x / 255 for x in [129.3, 124.1, 112.4]],
dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.std = torch.tensor([x / 255 for x in [68.2, 65.4, 70.4]],
dtype=torch.float32).reshape(1, 3, 1, 1).cuda()
args.labels_per_class = 500
else:
raise AssertionError('Given Dataset is not supported!')
# create model
print_log("=> creating model '{}'".format(args.arch), log)
net = models.__dict__[args.arch](num_classes, args.dropout, stride).cuda()
args.num_classes = num_classes
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
optimizer = torch.optim.SGD(net.parameters(),
state['learning_rate'],
momentum=state['momentum'],
weight_decay=state['decay'],
nesterov=True)
recorder = RecorderMeter(args.epochs)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print_log("=> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
recorder = checkpoint['recorder']
args.start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
best_acc = recorder.max_accuracy(False)
print_log(
"=> loaded checkpoint '{}' accuracy={} (epoch {})".format(
args.resume, best_acc, checkpoint['epoch']), log)
else:
print_log("=> no checkpoint found at '{}'".format(args.resume), log)
else:
print_log("=> do not use any checkpoint for {} model".format(args.arch), log)
if args.evaluate:
validate(test_loader, net, criterion, log)
return
if args.mp > 0:
mp = Pool(args.mp)
else:
mp = None
start_time = time.time()
epoch_time = AverageMeter()
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate = adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
if epoch == args.schedule[0]:
args.clean_lam == 0
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs, need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False), 100-recorder.max_accuracy(False)), log)
# train for one epoch
tr_acc, tr_acc5, tr_los = train(train_loader, net, optimizer, epoch, args, log, mp=mp)
# evaluate on validation set
val_acc, val_los = validate(test_loader, net, log)
if (epoch % 50) == 0 and args.adv_p > 0:
_, _ = validate(test_loader, net, log, fgsm=True, eps=4, mean=args.mean, std=args.std)
_, _ = validate(test_loader, net, log, fgsm=True, eps=8, mean=args.mean, std=args.std)
train_loss.append(tr_los)
train_acc.append(tr_acc)
test_loss.append(val_los)
test_acc.append(val_acc)
is_best = False
if val_acc > best_acc:
is_best = True
best_acc = val_acc
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
if args.log_off:
continue
# save log
save_checkpoint(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net.state_dict(),
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}, is_best, exp_dir, 'checkpoint.pth.tar')
dummy = recorder.update(epoch, tr_los, tr_acc, val_los, val_acc)
if (epoch + 1) % 100 == 0:
recorder.plot_curve(result_png_path)
train_log = OrderedDict()
train_log['train_loss'] = train_loss
train_log['train_acc'] = train_acc
train_log['test_loss'] = test_loss
train_log['test_acc'] = test_acc
pickle.dump(train_log, open(os.path.join(exp_dir, 'log.pkl'), 'wb'))
plotting(exp_dir)
acc_var = np.maximum(
np.max(test_acc[-10:]) - np.median(test_acc[-10:]),
np.median(test_acc[-10:]) - np.min(test_acc[-10:]))
print_log(
"\nfinal 10 epoch acc (median) : {:.2f} (+- {:.2f})".format(np.median(test_acc[-10:]),
acc_var), log)
if not args.log_off:
log.close()
if __name__ == '__main__':
main()