forked from kame-hame-haa/generatorNeuralNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ownPokemonGAN.py~
219 lines (170 loc) · 6.46 KB
/
ownPokemonGAN.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
CHANNEL = 3 #1 bei grauer Farbe
HEIGHT = 28
WIDTH = 28
batch_size = 32
image_dim = HEIGHT * WIDTH * CHANNEL
z_dim = 10
h_dim = 128
data_directory = "./all"
# Reading in the pictures
def process_data():
images = []
for each in os.listdir(data_directory):
if ".jpg" in each:
images.append(os.path.join(data_directory, each))
all_images = tf.convert_to_tensor(images, dtype=tf.string)
images_queue = tf.train.slice_input_producer(
[all_images])
content = tf.read_file(images_queue[0])
image = tf.image.decode_jpeg(content, channels=CHANNEL)
image = tf.image.random_flip_left_right(image)
image = tf.image.random_brightness(image, max_delta=0.1)
image = tf.image.random_contrast(image, lower=0.9, upper=1.1)
size = [HEIGHT, WIDTH]
image = tf.image.resize_images(image, size)
image.set_shape([HEIGHT, WIDTH, CHANNEL])
image = tf.cast(image, tf.float32)
image = image / 255.0
images_batch = tf.train.shuffle_batch(
[image], batch_size=batch_size,
num_threads=4, capacity=200 + 3 * batch_size,
min_after_dequeue=200)
num_images = len(images)
return images_batch, num_images
# drawing the generated images
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
if CHANNEL == 1:
plt.imshow(sample.reshape(WIDTH, HEIGHT), cmap='Greys_r', interpolation="none")
else:
plt.imshow(sample.reshape(WIDTH, HEIGHT, CHANNEL), interpolation="none")
return fig
# normalisiert erstellte Matrizen; besser als 0 - Matrizen
#vermeidet das die Matrix mit null initialisiert wird und macht eine Normalverteilung
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
# Input for the Generator
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
# The discriminator
def discriminator(x):
x = tf.reshape(x,[-1,image_dim])
d_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
out = tf.matmul(d_h1, D_W2) + D_b2
return out
# Initialize weights
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1) # normalverteilung
return tf.Variable(initial)
# initialize biases
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
with tf.name_scope('model1'):
# generator variabeln
z = tf.placeholder(tf.float32, shape=[None, z_dim])
G_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
G_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
G_W2 = tf.Variable(xavier_init([h_dim, image_dim]))
G_b2 = tf.Variable(tf.zeros(shape=[image_dim]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
# discriminator variabeln
real_images = tf.placeholder(tf.float32, shape = [None, HEIGHT, WIDTH, CHANNEL], name='real_image')
D_W1 = tf.Variable(xavier_init([image_dim, h_dim]))
D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
# generator
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_sample = tf.nn.sigmoid(G_log_prob)
# discriminator
D_real = discriminator(real_images)
D_fake = discriminator(G_sample)
with tf.name_scope('train'):
D_loss = tf.reduce_mean(D_real) - tf.reduce_mean(D_fake)
G_loss = -tf.reduce_mean(D_fake)
D_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4)
.minimize(-D_loss, var_list=theta_D))
G_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4)
.minimize(G_loss, var_list=theta_G))
clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in theta_D]
# Load saved model
def getlastmodel():
iterat = 0 # Initialize the iteration we are at with 0
for st in os.listdir("./models"):
newstring = st
while "." in newstring:
newstring = newstring[:-1]
if "point" not in newstring:
if int(newstring[6:]) > iterat:
iterat = int(newstring[6:]) # set the number after "model_" as our iteration
return "./models/model_%s.ckpt" % iterat, iterat
sess = tf.Session()
sess.run(tf.global_variables_initializer())
with sess.as_default():
# Create folders we're going to use:
if not os.path.exists('out/'):
os.makedirs('out/')
if not os.path.exists("./models"):
os.makedirs("./models")
# A Saver to save our model:
saver = tf.train.Saver()
# Reloading Model:
model, iterationcounter = getlastmodel()
if len(os.listdir("./models")) > 0:
saver.restore(sess, model)
print("Model restored.",)
i = iterationcounter
print(i)
else:
iterationcounter = 0
# Initialise batch, coordinator and thread that feed the session with the images
image_batch, samples_num = process_data()
print(samples_num)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# The main loop:
for it in range(10000000):
# Train Discriminator five times as much as the Generator
for _ in range(5):
train_image = sess.run(image_batch)
# D
_, D_loss_curr, _ = sess.run(
[D_solver, D_loss, clip_D],
feed_dict={real_images: train_image, z: sample_z(batch_size, z_dim)}
)
# G
_, G_loss_curr = sess.run(
[G_solver, G_loss],
feed_dict={z: sample_z(batch_size, z_dim)}
)
if it % 100 == 0 and it != 0:
iterationcounter += 100
#Print current Loss
print('Iter: {}; D_loss: {:.4}; G_loss: {:.4}'.format(iterationcounter, D_loss_curr, G_loss_curr))
if it % 1000 == 0:
# Draw samples
samples = sess.run(G_sample, feed_dict={z: sample_z(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(iterationcounter).zfill(3)), bbox_inches='tight')
plt.close(fig)
#Save Model
save_path = saver.save(sess, "./models/model_%s.ckpt" % iterationcounter)
print("Model saved in file: %s" % save_path)