forked from kame-hame-haa/generatorNeuralNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_better_ownData.py
205 lines (152 loc) · 5.75 KB
/
gan_better_ownData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import tensorflow as tf
import numpy as np
from random import randint
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
CHANNEL = 3
HEIGHT = 28
WIDTH = 28
X_dim = HEIGHT * WIDTH * CHANNEL
mb_size = 32
z_dim = 10
h_dim = 128
data_directory = "./sprites"
filelist = []
for s in os.listdir(data_directory):
if ".png" in s:
filelist.append(data_directory + "/" + s)
images = []
for img in filelist:
image_contents = tf.read_file(img)
image = tf.image.decode_png(image_contents, channels=3)
image = tf.image.resize_images(image, [28, 28])
images.append(image)
def plot(samplefigs):
returnfig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for x, sample in enumerate(samplefigs):
ax = plt.subplot(gs[x])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28, 3)) # TODO: is this right?
return returnfig
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def discriminator(x, d_w1, d_w2, d_b1, d_b2):
d_h1 = tf.nn.relu(tf.matmul(x, d_w1) + d_b1)
out = tf.matmul(d_h1, d_w2) + d_b2
return out
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1) # Normalverteilung
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def next_batch(num, data):
# Return `num` random samples
randomnumbers = []
for _ in range(num):
randomnumbers.append(randint(0, len(data) - 1))
nextbatch = []
for ran in randomnumbers:
nextbatch.append(data[ran])
return nextbatch
def getlastmodel():
iterat = 0
for st in os.listdir("./models"):
newstring = st
while "." in newstring:
newstring = newstring[:-1]
if "point" not in newstring:
if int(newstring[6:]) > iterat:
iterat = int(newstring[6:])
return "./models/model_%s.ckpt" % iterat, iterat
with tf.name_scope('model1'):
# generator variabeln
z = tf.placeholder(tf.float32, shape=[None, z_dim])
G_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
G_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
G_W2 = tf.Variable(xavier_init([h_dim, X_dim]))
G_b2 = tf.Variable(tf.zeros(shape=[X_dim]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
# discriminator variabeln
X = tf.placeholder(tf.float32, shape=[None, X_dim])
D_W1 = tf.Variable(xavier_init([X_dim, h_dim]))
D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
# Generator
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_sample = tf.nn.sigmoid(G_log_prob)
# discriminator
D_real = discriminator(X, D_W1, D_W2, D_b1, D_b2)
D_fake = discriminator(G_sample, D_W1, D_W2, D_b1, D_b2)
with tf.name_scope('train'):
D_loss = tf.reduce_mean(D_real) - tf.reduce_mean(D_fake)
G_loss = -tf.reduce_mean(D_fake)
D_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4)
.minimize(-D_loss, var_list=theta_D))
G_solver = (tf.train.RMSPropOptimizer(learning_rate=1e-4)
.minimize(G_loss, var_list=theta_G))
clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in theta_D]
sess = tf.Session()
sess.run(tf.global_variables_initializer())
with sess.as_default():
# Create folders we're going to use:
if not os.path.exists('out/'):
os.makedirs('out/')
if not os.path.exists("./models"):
os.makedirs("./models")
# A Saver to save our model:
saver = tf.train.Saver()
# Reloading Model:
model, iterationcounter = getlastmodel()
if len(os.listdir("./models")) > 0:
saver.restore(sess, model)
print("Model restored.",)
i = iterationcounter
print(i)
else:
iterationcounter = 0
for it in range(1000000):
for _ in range(5):
batch = next_batch(mb_size, images)
# Reshaping from shape: (32,#imgs,28,28,3) to (#imgs,(2352)) because 2352 = 28*28*3
xshape = X.get_shape().as_list()
dim = np.prod(xshape[1:])
batch_reshaped = tf.reshape(batch, [-1, dim])
batch_eval = sess.run(batch_reshaped) # evaluating tensor to array
_, D_loss_curr, _ = sess.run(
[D_solver, D_loss, clip_D],
feed_dict={X: batch_eval, z: sample_z(mb_size, z_dim)}
)
_, G_loss_curr = sess.run(
[G_solver, G_loss],
feed_dict={z: sample_z(mb_size, z_dim)}
)
if it % 100 == 0 and it != 0:
iterationcounter += 100
print('Iter: {}; D loss: {:.4}; G_loss: {:.4}'
.format(str(iterationcounter), D_loss_curr, G_loss_curr))
if it % 100 == 0:
samples = sess.run(G_sample, feed_dict={z: sample_z(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'
.format(str(iterationcounter).zfill(3)), bbox_inches='tight')
plt.close(fig)
save_path = saver.save(sess, "./models/model_%s.ckpt" % iterationcounter)
print("Model saved in file: %s" % save_path)