forked from Pymol-Scripts/Pymol-script-repo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformations.py
1912 lines (1618 loc) · 64.2 KB
/
transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# transformations.py
# Copyright (c) 2006-2012, Christoph Gohlke
# Copyright (c) 2006-2012, The Regents of the University of California
# Produced at the Laboratory for Fluorescence Dynamics
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Homogeneous Transformation Matrices and Quaternions.
A library for calculating 4x4 matrices for translating, rotating, reflecting,
scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
3D homogeneous coordinates as well as for converting between rotation matrices,
Euler angles, and quaternions. Also includes an Arcball control object and
functions to decompose transformation matrices.
:Authors:
`Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
Laboratory for Fluorescence Dynamics, University of California, Irvine
:Version: 2012.01.01
Requirements
------------
* `Python 2.7 or 3.2 <http://www.python.org>`__
* `Numpy 1.6 <http://numpy.scipy.org>`__
* `transformations.c 2012.01.01 <http://www.lfd.uci.edu/~gohlke/>`__
(optional implementation of some functions in C)
Notes
-----
The API is not stable yet and is expected to change between revisions.
This Python code is not optimized for speed. Refer to the transformations.c
module for a faster implementation of some functions.
Documentation in HTML format can be generated with epydoc.
Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using
numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using
numpy.dot(M, v) for shape (4, \*) column vectors, respectively
numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points").
This module follows the "column vectors on the right" and "row major storage"
(C contiguous) conventions. The translation components are in the right column
of the transformation matrix, i.e. M[:3, 3].
The transpose of the transformation matrices may have to be used to interface
with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16].
Calculations are carried out with numpy.float64 precision.
Vector, point, quaternion, and matrix function arguments are expected to be
"array like", i.e. tuple, list, or numpy arrays.
Return types are numpy arrays unless specified otherwise.
Angles are in radians unless specified otherwise.
Quaternions w+ix+jy+kz are represented as [w, x, y, z].
A triple of Euler angles can be applied/interpreted in 24 ways, which can
be specified using a 4 character string or encoded 4-tuple:
*Axes 4-string*: e.g. 'sxyz' or 'ryxy'
- first character : rotations are applied to 's'tatic or 'r'otating frame
- remaining characters : successive rotation axis 'x', 'y', or 'z'
*Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
- inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
- parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
- repetition : first and last axis are same (1) or different (0).
- frame : rotations are applied to static (0) or rotating (1) frame.
References
----------
(1) Matrices and transformations. Ronald Goldman.
In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
(2) More matrices and transformations: shear and pseudo-perspective.
Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
(3) Decomposing a matrix into simple transformations. Spencer Thomas.
In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
(4) Recovering the data from the transformation matrix. Ronald Goldman.
In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
(5) Euler angle conversion. Ken Shoemake.
In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
(6) Arcball rotation control. Ken Shoemake.
In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
(7) Representing attitude: Euler angles, unit quaternions, and rotation
vectors. James Diebel. 2006.
(8) A discussion of the solution for the best rotation to relate two sets
of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
(9) Closed-form solution of absolute orientation using unit quaternions.
BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642.
(10) Quaternions. Ken Shoemake.
http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
(11) From quaternion to matrix and back. JMP van Waveren. 2005.
http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
(12) Uniform random rotations. Ken Shoemake.
In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
(13) Quaternion in molecular modeling. CFF Karney.
J Mol Graph Mod, 25(5):595-604
(14) New method for extracting the quaternion from a rotation matrix.
Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087.
(15) Multiple View Geometry in Computer Vision. Hartley and Zissermann.
Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130.
(16) Column Vectors vs. Row Vectors.
http://steve.hollasch.net/cgindex/math/matrix/column-vec.html
Examples
--------
>>> alpha, beta, gamma = 0.123, -1.234, 2.345
>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]
>>> I = identity_matrix()
>>> Rx = rotation_matrix(alpha, xaxis)
>>> Ry = rotation_matrix(beta, yaxis)
>>> Rz = rotation_matrix(gamma, zaxis)
>>> R = concatenate_matrices(Rx, Ry, Rz)
>>> euler = euler_from_matrix(R, 'rxyz')
>>> numpy.allclose([alpha, beta, gamma], euler)
True
>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
>>> is_same_transform(R, Re)
True
>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
True
>>> qx = quaternion_about_axis(alpha, xaxis)
>>> qy = quaternion_about_axis(beta, yaxis)
>>> qz = quaternion_about_axis(gamma, zaxis)
>>> q = quaternion_multiply(qx, qy)
>>> q = quaternion_multiply(q, qz)
>>> Rq = quaternion_matrix(q)
>>> is_same_transform(R, Rq)
True
>>> S = scale_matrix(1.23, origin)
>>> T = translation_matrix([1, 2, 3])
>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
>>> R = random_rotation_matrix(numpy.random.rand(3))
>>> M = concatenate_matrices(T, R, Z, S)
>>> scale, shear, angles, trans, persp = decompose_matrix(M)
>>> numpy.allclose(scale, 1.23)
True
>>> numpy.allclose(trans, [1, 2, 3])
True
>>> numpy.allclose(shear, [0, math.tan(beta), 0])
True
>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
True
>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
>>> is_same_transform(M, M1)
True
>>> v0, v1 = random_vector(3), random_vector(3)
>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1))
>>> v2 = numpy.dot(v0, M[:3,:3].T)
>>> numpy.allclose(unit_vector(v1), unit_vector(v2))
True
"""
from __future__ import division, print_function
import sys
import os
import warnings
import math
import numpy
def identity_matrix():
"""Return 4x4 identity/unit matrix.
>>> I = identity_matrix()
>>> numpy.allclose(I, numpy.dot(I, I))
True
>>> numpy.sum(I), numpy.trace(I)
(4.0, 4.0)
>>> numpy.allclose(I, numpy.identity(4))
True
"""
return numpy.identity(4)
def translation_matrix(direction):
"""Return matrix to translate by direction vector.
>>> v = numpy.random.random(3) - 0.5
>>> numpy.allclose(v, translation_matrix(v)[:3, 3])
True
"""
M = numpy.identity(4)
M[:3, 3] = direction[:3]
return M
def translation_from_matrix(matrix):
"""Return translation vector from translation matrix.
>>> v0 = numpy.random.random(3) - 0.5
>>> v1 = translation_from_matrix(translation_matrix(v0))
>>> numpy.allclose(v0, v1)
True
"""
return numpy.array(matrix, copy=False)[:3, 3].copy()
def reflection_matrix(point, normal):
"""Return matrix to mirror at plane defined by point and normal vector.
>>> v0 = numpy.random.random(4) - 0.5
>>> v0[3] = 1.
>>> v1 = numpy.random.random(3) - 0.5
>>> R = reflection_matrix(v0, v1)
>>> numpy.allclose(2, numpy.trace(R))
True
>>> numpy.allclose(v0, numpy.dot(R, v0))
True
>>> v2 = v0.copy()
>>> v2[:3] += v1
>>> v3 = v0.copy()
>>> v2[:3] -= v1
>>> numpy.allclose(v2, numpy.dot(R, v3))
True
"""
normal = unit_vector(normal[:3])
M = numpy.identity(4)
M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
return M
def reflection_from_matrix(matrix):
"""Return mirror plane point and normal vector from reflection matrix.
>>> v0 = numpy.random.random(3) - 0.5
>>> v1 = numpy.random.random(3) - 0.5
>>> M0 = reflection_matrix(v0, v1)
>>> point, normal = reflection_from_matrix(M0)
>>> M1 = reflection_matrix(point, normal)
>>> is_same_transform(M0, M1)
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)
# normal: unit eigenvector corresponding to eigenvalue -1
w, V = numpy.linalg.eig(M[:3, :3])
i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0]
if not len(i):
raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
normal = numpy.real(V[:, i[0]]).squeeze()
# point: any unit eigenvector corresponding to eigenvalue 1
w, V = numpy.linalg.eig(M)
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
if not len(i):
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
point = numpy.real(V[:, i[-1]]).squeeze()
point /= point[3]
return point, normal
def rotation_matrix(angle, direction, point=None):
"""Return matrix to rotate about axis defined by point and direction.
>>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0])
>>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1])
True
>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
>>> is_same_transform(R0, R1)
True
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(-angle, -direc, point)
>>> is_same_transform(R0, R1)
True
>>> I = numpy.identity(4, numpy.float64)
>>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
True
>>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2,
... direc, point)))
True
"""
sina = math.sin(angle)
cosa = math.cos(angle)
direction = unit_vector(direction[:3])
# rotation matrix around unit vector
R = numpy.diag([cosa, cosa, cosa])
R += numpy.outer(direction, direction) * (1.0 - cosa)
direction *= sina
R += numpy.array([[0.0, -direction[2], direction[1]],
[direction[2], 0.0, -direction[0]],
[-direction[1], direction[0], 0.0]])
M = numpy.identity(4)
M[:3, :3] = R
if point is not None:
# rotation not around origin
point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
M[:3, 3] = point - numpy.dot(R, point)
return M
def rotation_from_matrix(matrix):
"""Return rotation angle and axis from rotation matrix.
>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> angle, direc, point = rotation_from_matrix(R0)
>>> R1 = rotation_matrix(angle, direc, point)
>>> is_same_transform(R0, R1)
True
"""
R = numpy.array(matrix, dtype=numpy.float64, copy=False)
R33 = R[:3, :3]
# direction: unit eigenvector of R33 corresponding to eigenvalue of 1
w, W = numpy.linalg.eig(R33.T)
# i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-7)[0]
if not len(i):
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
direction = numpy.real(W[:, i[-1]]).squeeze()
# point: unit eigenvector of R33 corresponding to eigenvalue of 1
w, Q = numpy.linalg.eig(R)
# i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-7)[0]
if not len(i):
raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
point = numpy.real(Q[:, i[-1]]).squeeze()
point /= point[3]
# rotation angle depending on direction
cosa = (numpy.trace(R33) - 1.0) / 2.0
if abs(direction[2]) > 1e-8:
sina = (R[1, 0] + (cosa - 1.0) * direction[0] * direction[1]) / direction[2]
elif abs(direction[1]) > 1e-8:
sina = (R[0, 2] + (cosa - 1.0) * direction[0] * direction[2]) / direction[1]
else:
sina = (R[2, 1] + (cosa - 1.0) * direction[1] * direction[2]) / direction[0]
angle = math.atan2(sina, cosa)
return angle, direction, point
def scale_matrix(factor, origin=None, direction=None):
"""Return matrix to scale by factor around origin in direction.
Use factor -1 for point symmetry.
>>> v = (numpy.random.rand(4, 5) - 0.5) * 20
>>> v[3] = 1
>>> S = scale_matrix(-1.234)
>>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
True
>>> factor = random.random() * 10 - 5
>>> origin = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> S = scale_matrix(factor, origin)
>>> S = scale_matrix(factor, origin, direct)
"""
if direction is None:
# uniform scaling
M = numpy.diag([factor, factor, factor, 1.0])
if origin is not None:
M[:3, 3] = origin[:3]
M[:3, 3] *= 1.0 - factor
else:
# nonuniform scaling
direction = unit_vector(direction[:3])
factor = 1.0 - factor
M = numpy.identity(4)
M[:3, :3] -= factor * numpy.outer(direction, direction)
if origin is not None:
M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
return M
def scale_from_matrix(matrix):
"""Return scaling factor, origin and direction from scaling matrix.
>>> factor = random.random() * 10 - 5
>>> origin = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> S0 = scale_matrix(factor, origin)
>>> factor, origin, direction = scale_from_matrix(S0)
>>> S1 = scale_matrix(factor, origin, direction)
>>> is_same_transform(S0, S1)
True
>>> S0 = scale_matrix(factor, origin, direct)
>>> factor, origin, direction = scale_from_matrix(S0)
>>> S1 = scale_matrix(factor, origin, direction)
>>> is_same_transform(S0, S1)
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)
M33 = M[:3, :3]
factor = numpy.trace(M33) - 2.0
try:
# direction: unit eigenvector corresponding to eigenvalue factor
w, V = numpy.linalg.eig(M33)
i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0]
direction = numpy.real(V[:, i]).squeeze()
direction /= vector_norm(direction)
except IndexError:
# uniform scaling
factor = (factor + 2.0) / 3.0
direction = None
# origin: any eigenvector corresponding to eigenvalue 1
w, V = numpy.linalg.eig(M)
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
if not len(i):
raise ValueError("no eigenvector corresponding to eigenvalue 1")
origin = numpy.real(V[:, i[-1]]).squeeze()
origin /= origin[3]
return factor, origin, direction
def projection_matrix(point, normal, direction=None,
perspective=None, pseudo=False):
"""Return matrix to project onto plane defined by point and normal.
Using either perspective point, projection direction, or none of both.
If pseudo is True, perspective projections will preserve relative depth
such that Perspective = dot(Orthogonal, PseudoPerspective).
>>> P = projection_matrix([0, 0, 0], [1, 0, 0])
>>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
True
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(3) - 0.5
>>> P0 = projection_matrix(point, normal)
>>> P1 = projection_matrix(point, normal, direction=direct)
>>> P2 = projection_matrix(point, normal, perspective=persp)
>>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
>>> is_same_transform(P2, numpy.dot(P0, P3))
True
>>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0])
>>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20
>>> v0[3] = 1
>>> v1 = numpy.dot(P, v0)
>>> numpy.allclose(v1[1], v0[1])
True
>>> numpy.allclose(v1[0], 3-v1[1])
True
"""
M = numpy.identity(4)
point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
normal = unit_vector(normal[:3])
if perspective is not None:
# perspective projection
perspective = numpy.array(perspective[:3], dtype=numpy.float64,
copy=False)
M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective - point, normal)
M[:3, :3] -= numpy.outer(perspective, normal)
if pseudo:
# preserve relative depth
M[:3, :3] -= numpy.outer(normal, normal)
M[:3, 3] = numpy.dot(point, normal) * (perspective + normal)
else:
M[:3, 3] = numpy.dot(point, normal) * perspective
M[3, :3] = -normal
M[3, 3] = numpy.dot(perspective, normal)
elif direction is not None:
# parallel projection
direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
scale = numpy.dot(direction, normal)
M[:3, :3] -= numpy.outer(direction, normal) / scale
M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
else:
# orthogonal projection
M[:3, :3] -= numpy.outer(normal, normal)
M[:3, 3] = numpy.dot(point, normal) * normal
return M
def projection_from_matrix(matrix, pseudo=False):
"""Return projection plane and perspective point from projection matrix.
Return values are same as arguments for projection_matrix function:
point, normal, direction, perspective, and pseudo.
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(3) - 0.5
>>> P0 = projection_matrix(point, normal)
>>> result = projection_from_matrix(P0)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, direct)
>>> result = projection_from_matrix(P0)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
>>> result = projection_from_matrix(P0, pseudo=False)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
>>> result = projection_from_matrix(P0, pseudo=True)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)
M33 = M[:3, :3]
w, V = numpy.linalg.eig(M)
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
if not pseudo and len(i):
# point: any eigenvector corresponding to eigenvalue 1
point = numpy.real(V[:, i[-1]]).squeeze()
point /= point[3]
# direction: unit eigenvector corresponding to eigenvalue 0
w, V = numpy.linalg.eig(M33)
i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
if not len(i):
raise ValueError("no eigenvector corresponding to eigenvalue 0")
direction = numpy.real(V[:, i[0]]).squeeze()
direction /= vector_norm(direction)
# normal: unit eigenvector of M33.T corresponding to eigenvalue 0
w, V = numpy.linalg.eig(M33.T)
i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
if len(i):
# parallel projection
normal = numpy.real(V[:, i[0]]).squeeze()
normal /= vector_norm(normal)
return point, normal, direction, None, False
else:
# orthogonal projection, where normal equals direction vector
return point, direction, None, None, False
else:
# perspective projection
i = numpy.where(abs(numpy.real(w)) > 1e-8)[0]
if not len(i):
raise ValueError(
"no eigenvector not corresponding to eigenvalue 0")
point = numpy.real(V[:, i[-1]]).squeeze()
point /= point[3]
normal = - M[3, :3]
perspective = M[:3, 3] / numpy.dot(point[:3], normal)
if pseudo:
perspective -= normal
return point, normal, None, perspective, pseudo
def clip_matrix(left, right, bottom, top, near, far, perspective=False):
"""Return matrix to obtain normalized device coordinates from frustrum.
The frustrum bounds are axis-aligned along x (left, right),
y (bottom, top) and z (near, far).
Normalized device coordinates are in range [-1, 1] if coordinates are
inside the frustrum.
If perspective is True the frustrum is a truncated pyramid with the
perspective point at origin and direction along z axis, otherwise an
orthographic canonical view volume (a box).
Homogeneous coordinates transformed by the perspective clip matrix
need to be dehomogenized (divided by w coordinate).
>>> frustrum = numpy.random.rand(6)
>>> frustrum[1] += frustrum[0]
>>> frustrum[3] += frustrum[2]
>>> frustrum[5] += frustrum[4]
>>> M = clip_matrix(perspective=False, *frustrum)
>>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1])
array([-1., -1., -1., 1.])
>>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1])
array([ 1., 1., 1., 1.])
>>> M = clip_matrix(perspective=True, *frustrum)
>>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1])
>>> v / v[3]
array([-1., -1., -1., 1.])
>>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1])
>>> v / v[3]
array([ 1., 1., -1., 1.])
"""
if left >= right or bottom >= top or near >= far:
raise ValueError("invalid frustrum")
if perspective:
if near <= _EPS:
raise ValueError("invalid frustrum: near <= 0")
t = 2.0 * near
M = [[t / (left - right), 0.0, (right + left) / (right - left), 0.0],
[0.0, t / (bottom - top), (top + bottom) / (top - bottom), 0.0],
[0.0, 0.0, (far + near) / (near - far), t * far / (far - near)],
[0.0, 0.0, -1.0, 0.0]]
else:
M = [[2.0 / (right - left), 0.0, 0.0, (right + left) / (left - right)],
[0.0, 2.0 / (top - bottom), 0.0, (top + bottom) / (bottom - top)],
[0.0, 0.0, 2.0 / (far - near), (far + near) / (near - far)],
[0.0, 0.0, 0.0, 1.0]]
return numpy.array(M)
def shear_matrix(angle, direction, point, normal):
"""Return matrix to shear by angle along direction vector on shear plane.
The shear plane is defined by a point and normal vector. The direction
vector must be orthogonal to the plane's normal vector.
A point P is transformed by the shear matrix into P" such that
the vector P-P" is parallel to the direction vector and its extent is
given by the angle of P-P'-P", where P' is the orthogonal projection
of P onto the shear plane.
>>> angle = (random.random() - 0.5) * 4*math.pi
>>> direct = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.cross(direct, numpy.random.random(3))
>>> S = shear_matrix(angle, direct, point, normal)
>>> numpy.allclose(1, numpy.linalg.det(S))
True
"""
normal = unit_vector(normal[:3])
direction = unit_vector(direction[:3])
if abs(numpy.dot(normal, direction)) > 1e-6:
raise ValueError("direction and normal vectors are not orthogonal")
angle = math.tan(angle)
M = numpy.identity(4)
M[:3, :3] += angle * numpy.outer(direction, normal)
M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
return M
def shear_from_matrix(matrix):
"""Return shear angle, direction and plane from shear matrix.
>>> angle = (random.random() - 0.5) * 4*math.pi
>>> direct = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.cross(direct, numpy.random.random(3))
>>> S0 = shear_matrix(angle, direct, point, normal)
>>> angle, direct, point, normal = shear_from_matrix(S0)
>>> S1 = shear_matrix(angle, direct, point, normal)
>>> is_same_transform(S0, S1)
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)
M33 = M[:3, :3]
# normal: cross independent eigenvectors corresponding to the eigenvalue 1
w, V = numpy.linalg.eig(M33)
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0]
if len(i) < 2:
raise ValueError("no two linear independent eigenvectors found %s" % w)
V = numpy.real(V[:, i]).squeeze().T
lenorm = -1.0
for i0, i1 in ((0, 1), (0, 2), (1, 2)):
n = numpy.cross(V[i0], V[i1])
w = vector_norm(n)
if w > lenorm:
lenorm = w
normal = n
normal /= lenorm
# direction and angle
direction = numpy.dot(M33 - numpy.identity(3), normal)
angle = vector_norm(direction)
direction /= angle
angle = math.atan(angle)
# point: eigenvector corresponding to eigenvalue 1
w, V = numpy.linalg.eig(M)
i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
if not len(i):
raise ValueError("no eigenvector corresponding to eigenvalue 1")
point = numpy.real(V[:, i[-1]]).squeeze()
point /= point[3]
return angle, direction, point, normal
def decompose_matrix(matrix):
"""Return sequence of transformations from transformation matrix.
matrix : array_like
Non-degenerative homogeneous transformation matrix
Return tuple of:
scale : vector of 3 scaling factors
shear : list of shear factors for x-y, x-z, y-z axes
angles : list of Euler angles about static x, y, z axes
translate : translation vector along x, y, z axes
perspective : perspective partition of matrix
Raise ValueError if matrix is of wrong type or degenerative.
>>> T0 = translation_matrix([1, 2, 3])
>>> scale, shear, angles, trans, persp = decompose_matrix(T0)
>>> T1 = translation_matrix(trans)
>>> numpy.allclose(T0, T1)
True
>>> S = scale_matrix(0.123)
>>> scale, shear, angles, trans, persp = decompose_matrix(S)
>>> scale[0]
0.123
>>> R0 = euler_matrix(1, 2, 3)
>>> scale, shear, angles, trans, persp = decompose_matrix(R0)
>>> R1 = euler_matrix(*angles)
>>> numpy.allclose(R0, R1)
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
if abs(M[3, 3]) < _EPS:
raise ValueError("M[3, 3] is zero")
M /= M[3, 3]
P = M.copy()
P[:, 3] = 0.0, 0.0, 0.0, 1.0
if not numpy.linalg.det(P):
raise ValueError("matrix is singular")
scale = numpy.zeros((3, ))
shear = [0.0, 0.0, 0.0]
angles = [0.0, 0.0, 0.0]
if any(abs(M[:3, 3]) > _EPS):
perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
M[:, 3] = 0.0, 0.0, 0.0, 1.0
else:
perspective = numpy.array([0.0, 0.0, 0.0, 1.0])
translate = M[3, :3].copy()
M[3, :3] = 0.0
row = M[:3, :3].copy()
scale[0] = vector_norm(row[0])
row[0] /= scale[0]
shear[0] = numpy.dot(row[0], row[1])
row[1] -= row[0] * shear[0]
scale[1] = vector_norm(row[1])
row[1] /= scale[1]
shear[0] /= scale[1]
shear[1] = numpy.dot(row[0], row[2])
row[2] -= row[0] * shear[1]
shear[2] = numpy.dot(row[1], row[2])
row[2] -= row[1] * shear[2]
scale[2] = vector_norm(row[2])
row[2] /= scale[2]
shear[1:] /= scale[2]
if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
numpy.negative(scale, scale)
numpy.negative(row, row)
angles[1] = math.asin(-row[0, 2])
if math.cos(angles[1]):
angles[0] = math.atan2(row[1, 2], row[2, 2])
angles[2] = math.atan2(row[0, 1], row[0, 0])
else:
#angles[0] = math.atan2(row[1, 0], row[1, 1])
angles[0] = math.atan2(-row[2, 1], row[1, 1])
angles[2] = 0.0
return scale, shear, angles, translate, perspective
def compose_matrix(scale=None, shear=None, angles=None, translate=None,
perspective=None):
"""Return transformation matrix from sequence of transformations.
This is the inverse of the decompose_matrix function.
Sequence of transformations:
scale : vector of 3 scaling factors
shear : list of shear factors for x-y, x-z, y-z axes
angles : list of Euler angles about static x, y, z axes
translate : translation vector along x, y, z axes
perspective : perspective partition of matrix
>>> scale = numpy.random.random(3) - 0.5
>>> shear = numpy.random.random(3) - 0.5
>>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
>>> trans = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(4) - 0.5
>>> M0 = compose_matrix(scale, shear, angles, trans, persp)
>>> result = decompose_matrix(M0)
>>> M1 = compose_matrix(*result)
>>> is_same_transform(M0, M1)
True
"""
M = numpy.identity(4)
if perspective is not None:
P = numpy.identity(4)
P[3, :] = perspective[:4]
M = numpy.dot(M, P)
if translate is not None:
T = numpy.identity(4)
T[:3, 3] = translate[:3]
M = numpy.dot(M, T)
if angles is not None:
R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
M = numpy.dot(M, R)
if shear is not None:
Z = numpy.identity(4)
Z[1, 2] = shear[2]
Z[0, 2] = shear[1]
Z[0, 1] = shear[0]
M = numpy.dot(M, Z)
if scale is not None:
S = numpy.identity(4)
S[0, 0] = scale[0]
S[1, 1] = scale[1]
S[2, 2] = scale[2]
M = numpy.dot(M, S)
M /= M[3, 3]
return M
def orthogonalization_matrix(lengths, angles):
"""Return orthogonalization matrix for crystallographic cell coordinates.
Angles are expected in degrees.
The de-orthogonalization matrix is the inverse.
>>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
>>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
True
>>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
>>> numpy.allclose(numpy.sum(O), 43.063229)
True
"""
a, b, c = lengths
angles = numpy.radians(angles)
sina, sinb, _ = numpy.sin(angles)
cosa, cosb, cosg = numpy.cos(angles)
co = (cosa * cosb - cosg) / (sina * sinb)
return numpy.array([
[a * sinb * math.sqrt(1.0 - co * co), 0.0, 0.0, 0.0],
[-a * sinb * co, b * sina, 0.0, 0.0],
[a * cosb, b * cosa, c, 0.0],
[0.0, 0.0, 0.0, 1.0]])
def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True):
"""Return affine transform matrix to register two point sets.
v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous
coordinates, where ndims is the dimensionality of the coordinate space.
If shear is False, a similarity transformation matrix is returned.
If also scale is False, a rigid/Eucledian transformation matrix
is returned.
By default the algorithm by Hartley and Zissermann [15] is used.
If usesvd is True, similarity and Eucledian transformation matrices
are calculated by minimizing the weighted sum of squared deviations
(RMSD) according to the algorithm by Kabsch [8].
Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9]
is used, which is slower when using this Python implementation.
The returned matrix performs rotation, translation and uniform scaling
(if specified).
>>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]]
>>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]]
>>> affine_matrix_from_points(v0, v1)
array([[ 0.14549, 0.00062, 675.50008],
[ 0.00048, 0.14094, 53.24971],
[ 0. , 0. , 1. ]])
>>> T = translation_matrix(numpy.random.random(3)-0.5)
>>> R = random_rotation_matrix(numpy.random.random(3))
>>> S = scale_matrix(random.random())
>>> M = concatenate_matrices(T, R, S)
>>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
>>> v0[3] = 1
>>> v1 = numpy.dot(M, v0)
>>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1)
>>> M = affine_matrix_from_points(v0[:3], v1[:3])
>>> numpy.allclose(v1, numpy.dot(M, v0))
True
More examples in superimposition_matrix()
"""
v0 = numpy.array(v0, dtype=numpy.float64, copy=True)
v1 = numpy.array(v1, dtype=numpy.float64, copy=True)
ndims = v0.shape[0]
if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape:
raise ValueError("input arrays are of wrong shape or type")
# move centroids to origin
t0 = -numpy.mean(v0, axis=1)
M0 = numpy.identity(ndims + 1)
M0[:ndims, ndims] = t0
v0 += t0.reshape(ndims, 1)
t1 = -numpy.mean(v1, axis=1)
M1 = numpy.identity(ndims + 1)
M1[:ndims, ndims] = t1
v1 += t1.reshape(ndims, 1)
if shear:
# Affine transformation
A = numpy.concatenate((v0, v1), axis=0)
u, s, vh = numpy.linalg.svd(A.T)
vh = vh[:ndims].T
B = vh[:ndims]
C = vh[ndims:2 * ndims]
t = numpy.dot(C, numpy.linalg.pinv(B))
t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1)
M = numpy.vstack((t, ((0.0,) * ndims) + (1.0,)))
elif usesvd or ndims != 3:
# Rigid transformation via SVD of covariance matrix
u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
# rotation matrix from SVD orthonormal bases
R = numpy.dot(u, vh)
if numpy.linalg.det(R) < 0.0:
# R does not constitute right handed system
R -= numpy.outer(u[:, ndims - 1], vh[ndims - 1, :] * 2.0)
s[-1] *= -1.0
# homogeneous transformation matrix
M = numpy.identity(ndims + 1)
M[:ndims, :ndims] = R
else:
# Rigid transformation matrix via quaternion
# compute symmetric matrix N
xx, yy, zz = numpy.sum(v0 * v1, axis=1)
xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
N = [[xx + yy + zz, 0.0, 0.0, 0.0],
[yz - zy, xx - yy - zz, 0.0, 0.0],
[zx - xz, xy + yx, yy - xx - zz, 0.0],
[xy - yx, zx + xz, yz + zy, zz - xx - yy]]
# quaternion: eigenvector corresponding to most positive eigenvalue
w, V = numpy.linalg.eigh(N)
q = V[:, numpy.argmax(w)]
q /= vector_norm(q) # unit quaternion
# homogeneous transformation matrix
M = quaternion_matrix(q)
if scale and not shear:
# Affine transformation; scale is ratio of RMS deviations from centroid
v0 *= v0
v1 *= v1
M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
# move centroids back
M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0))
M /= M[ndims, ndims]
return M
def superimposition_matrix(v0, v1, scale=False, usesvd=True):
"""Return matrix to transform given 3D point set into second point set.
v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points.
The parameters scale and usesvd are explained in the more general
affine_matrix_from_points function.