-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathRGP.py
361 lines (257 loc) · 14.7 KB
/
RGP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#
# This file is part of the RGP distribution (https://github.com/smidmatej/RGP).
# Copyright (c) 2023 Smid Matej.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import numpy as np
from scipy.linalg import sqrtm
class RBF:
"""
Radial Basis Function kernel function k(x1,x2) = sigma_f**2 * exp(-1/2*(x1-x2).T.dot(L.dot(L)).dot(x1-x2))
"""
def __init__(self, L : np.array = np.eye(1), sigma_f : float = 1) -> None:
"""
Contructor of the RBF function k(x1,x2).
:param: L: Square np.array of dimension d x d. Defines the length scale of the kernel function
:param: sigma_f: Scalar value used to linearly scale the amplidude of the k(x,x)
"""
self.L = L
self.sigma_f = sigma_f
def __call__(self, x1 : np.array, x2 : np.array) -> float:
"""
Calculate the value of the kernel function given 2 input vectors
:param: x1: np.array of dimension 1 x d
:param: x2: np.array of dimension 1 x d
"""
dif = x1-x2
return float(self.sigma_f**2 * np.exp(-1/2*dif.T.dot(np.linalg.inv(self.L*self.L)).dot(dif)))
def covariance_matrix(self, x1 : np.array, x2 : np.array) -> np.array:
"""
Fills in a matrix with k(x1[i,:], x2[j,:])
:param: x1: n x d np.array, where n is the number of samples and d is the dimension of the regressor
:param: x2: n x d np.array, where n is the number of samples and d is the dimension of the regressor
:param: kernel: Instance of a KernelFunction class
"""
if x1 is None or x2 is None:
# Dimension zero matrix
return np.zeros((0,0))
cov_mat = np.empty((x1.shape[0], x2.shape[0]))*np.NaN
x1 = np.atleast_2d(x1)
x2 = np.atleast_2d(x2)
# for all combinations calculate the kernel
for i in range(x1.shape[0]):
_a = x1[i,:].reshape(-1,1)
for j in range(x2.shape[0]):
#breakpoint()
_b = x2[j,:].reshape(-1,1)
cov_mat[i,j] = self.__call__(_a,_b)
return cov_mat
def __str__(self):
return f"L = {self.L}, \n\r Sigma_f = {self.sigma_f}"
class RGP:
def __init__(self, X : np.array, y : np.array, theta=np.array([1.0,1.0,1.0])) -> None:
"""
:param: X: n x dx np.array, where n is the number of basis vectors and dx is the dimension of the regressor
:param: y: n x dy np.array, where n is the number of basis vectors and dy is the dimension of the response
"""
assert X.shape[0] == y.shape[0], "X and y must have the same number of rows"
#breakpoint()
if y.shape[1] > 1:
raise NotImplementedError("Only 1D response is supported")
if X.shape[1] > 1:
raise NotImplementedError("Only 1D regressor is supported")
self.X = X
self.y = y
self.theta = theta
# L and sigma_f are the hyperparameters of the RBF kernel function, they are not properties of the RGP
L = np.eye(self.X.shape[1]) * self.theta[0]# RBF
sigma_f = self.theta[1] # RBF
self.sigma_n = self.theta[2] # Noise variance
# Mean function m(x) = 0
self.K = RBF(L=L, sigma_f=sigma_f) # Kernel function
# WARNING: Dont confuse the estimate g at X with the estimate g_t at X_t
# p(g|y_t-1)
self.mu_g_t = y # The a priori mean is the measurement with no y_t
self.C_g_t = self.K.covariance_matrix(X, X) + self.sigma_n**2 * np.eye(self.X.shape[0]) # The a priori covariance is the covariance with no y_t
# Hyperparameter estimates for RGP*
# np.log to transform L into strictly positive values for training, inverse transformation is done at the end of learning
#self.mu_eta_t = np.concatenate([np.log(np.diagonal(L)), [np.log(sigma_f)], [np.log(self.sigma_n)]]) # The a priori mean of the hyperparameters is the hyperparameters
self.mu_eta_t = np.concatenate([np.diagonal(L), [sigma_f], [self.sigma_n]]) # The a priori mean of the hyperparameters is the hyperparameters
self.C_eta_t = np.eye(self.mu_eta_t.shape[0]) # The a priori covariance of the hyperparameters is the identity matrix
# Cross-covaariance between the basis vectors and the hyperparameters
self.C_g_eta_t = np.zeros((self.X.shape[0], self.mu_eta_t.shape[0])) # The a priori covariance is zero
# Precompute these since they do not change with regression (They change during learning, since the hyperparameters change)
self.K_x = self.K.covariance_matrix(self.X, self.X) + self.sigma_n**2 * np.eye(self.X.shape[0]) # Covariance matrix over X
self.K_x_inv = np.linalg.inv(self.K_x) # Inverse of the covariance matrix over X
def predict(self, X_t_star : np.array, cov : bool = False, return_Jt : bool = False) -> np.array:
"""
Predict the value of the response at X_t_star given the data X and y.
:param: X_t_star: m x dx np.array, where m is the number of points to predict at and dx is the dimension of the regressor
:param: cov: Boolean value. If true, the covariance matrix of the prediction is calculated and returned as well
"""
Jt = self.K.covariance_matrix(X_t_star, self.X).dot(self.K_x_inv) # Gain matrix
mu_p_t = Jt.dot(self.mu_g_t) # The a posteriori mean of p(g_t|y_t)
if cov:
# Calculate and return the covariance matrix too
B = self.K.covariance_matrix(X_t_star, X_t_star) - Jt.dot(self.K.covariance_matrix(self.X, X_t_star)) # Covariance of p(g_t|g_)
C_p_t = B + Jt.dot(self.C_g_t).dot(Jt.T) # The a posteriori covariance of p(g_t|y_t)
#breakpoint()
if return_Jt:
return mu_p_t, C_p_t, Jt
else:
return mu_p_t, C_p_t
else:
if return_Jt:
return mu_p_t, Jt
else:
return mu_p_t
def regress(self, Xt : np.array, yt : np.array) -> np.array:
# ------ New data received -> step the memory forward ------
self.mu_g_t_minus_1 = self.mu_g_t # The a priori mean is the estimate of g at X_
self.C_g_t_minus_1 = self.C_g_t
# ------ Inference step ------
# Infer the a posteriori distribution of p(g_t|y_t) (the estimate of g_t at X_t)
mu_p_t, C_p_t, Jt = self.predict(Xt, cov = True, return_Jt = True)
# ------ Update step ------
# Update the a posteriori distribution of p(g_|y_t) (the estimate of g at X)
G_tilde_t = self.C_g_t_minus_1.dot(Jt.T).dot(
np.linalg.inv(
C_p_t + self.sigma_n**2 * np.eye(Xt.shape[0]))) # Kalman gain
self.mu_g_t = self.mu_g_t_minus_1 + G_tilde_t.dot(yt - mu_p_t) # The a posteriori mean of p(g_|y_t)
self.C_g_t = self.C_g_t_minus_1 - G_tilde_t.dot(Jt).dot(self.C_g_t_minus_1) # The a posteriori covariance of p(g_|y_t)
return self.mu_g_t, self.C_g_t
def learn(self, Xt : np.array, yt : np.array) -> np.array:
"""
Performs both the updating of the basis vectors, but also the hyperparameter optimization
"""
n_eta = self.mu_eta_t.shape[0] # State dimension of eta
n_g = self.mu_g_t.shape[0] # State dimension of g
n_g_t = yt.shape[0] # State dimension of g_t
n_p = n_g + n_eta + n_g_t # State dimension of p
assert n_g_t == 1, "Only one-dimensional regression is supported"
assert Xt.shape[0] == 1, "Only one-dimensional regression is supported"
# ------ New data received -> step the memory forward ------
self.mu_g_t_minus_1 = self.mu_g_t # The a priori mean is the estimate of g at X_
self.C_g_t_minus_1 = self.C_g_t
self.mu_eta_t_minus_1 = self.mu_eta_t
self.C_eta_t_minus_1 = self.C_eta_t
self.C_g_eta_t_minus_1 = self.C_g_eta_t
# ------! Inference step !------
Jt = self.K.covariance_matrix(Xt, self.X).dot(self.K_x_inv) # Gain matrix (same as in regression)
assert Jt.shape[1] == n_g, "Jt.shape[1] != n_g"
B = self.K.covariance_matrix(Xt, Xt) - Jt.dot(self.K.covariance_matrix(self.X, Xt)) # Covariance of p(g_t|g_)
St = self.C_g_eta_t_minus_1.dot(np.linalg.inv(self.C_eta_t_minus_1))
# At is a function of Jt which is a function of eta (nonlinear function)
At = np.asarray(np.bmat([
[np.eye(n_g), np.zeros((n_g, n_eta))],
[np.zeros((n_eta, n_g)), np.eye(n_eta)],
[Jt, np.zeros((1, n_eta))]])) # I prefer using np arrays instead of np matrices
mu_w_t = np.zeros((n_p, )) # This is zero because of the zero mean function of GP. Should be nonzero in general
C_w_t = np.asarray(np.bmat([
[np.zeros((n_g, n_g)), np.zeros((n_g, n_eta)), np.zeros((n_g, n_g_t))],
[np.zeros((n_eta, n_g)), np.zeros((n_eta, n_eta)), np.zeros((n_eta, n_g_t))],
[np.zeros((n_g_t, n_g)), np.zeros((n_g_t, n_eta)), B]]))
assert mu_w_t.shape[0] == At.shape[0], "mu_w_t.shape[0] != At.shape[0]"
assert mu_w_t.shape[0] == C_w_t.shape[0], "mu_w_t.shape[0] != C_w_t.shape[0]"
# ------ Unscented transform ------
w, eta_hat = self.__draw_sigma_points(self.mu_eta_t_minus_1, self.C_eta_t_minus_1)
s = w.shape[0] # Number of sigma points
# p = [g, eta, g_t]
mu_p_i = np.empty((s, n_p)) # Allocate memory
C_p_i = np.empty((s, n_p, n_p)) # Allocate memory
mu_p_t = np.zeros((n_p, )) # Allocate memory
C_p_t = np.zeros((n_p, n_p)) # Allocate memory
for i in range(s):
# --------- Individual predictions from sigma points ---------
# Transform the sigma points
mu_p_i[i,:] = At.dot(np.concatenate([
self.mu_g_t_minus_1.ravel() + St.dot(eta_hat[i,:] - self.mu_eta_t_minus_1),
eta_hat[i,:]]
, axis=0)).ravel() + mu_w_t
tmp_matrix = np.bmat([[self.C_g_t_minus_1 - St.dot(self.C_g_eta_t_minus_1.T), np.zeros((n_g, n_eta))],[np.zeros((n_eta, n_g)), np.zeros((n_eta, n_eta))]])
C_p_i[i,:,:] = At.dot(np.asarray(tmp_matrix)).dot(At.T) + C_w_t
# --------- Combine individual predictions ---------
# Cummulative sum
mu_p_t += w[i] * mu_p_i[i,:]
C_p_t += w[i] * (np.outer(mu_p_i[i,:] - mu_p_t, mu_p_i[i,:] - mu_p_t) + C_p_i[i,:,:])
# ------! Update step !------
# Decomposition of mu_p_t into observable and unobservable parts
# Observable part
# o = [sigma_n, g_t]
mu_o_t = mu_p_t[n_g + n_eta - 1:] # sigma_n is on index n_g+n_eta-1 and is last of eta, everything after is is g_t
C_o_t = C_p_t[n_g + n_eta - 1:, n_g + n_eta - 1:]
# Unobservable part
# u = [g, eta-] (eta- is eta without the last element, sigma_n)
mu_u_t_minus_1 = mu_p_t[:n_g + n_eta - 1]
C_u_t_minus_1 = C_p_t[:n_g + n_eta - 1, :n_g + n_eta - 1]
# Covariance between observable and unobservable parts
C_ou_t = C_p_t[n_g + n_eta - 1:, :n_g + n_eta - 1]
# ------ Update observable state ------
mu_y_t = mu_o_t[1:] # g_t (without sigma_n)
C_y_t = C_o_t[1:, 1:] + C_o_t[0, 0] + mu_o_t[0]**2
C_o_y_t = C_o_t[:, 1:] # Covariance between observable part and y_t
Gt = C_o_y_t.dot(np.linalg.inv(C_y_t)) # Kalman gain
# Updated observable part
# e = [sigma_n, g_t]
mu_e_t = mu_o_t + Gt.dot(yt - mu_y_t)
C_e_t = C_o_t - Gt.dot(C_y_t).dot(Gt.T)
# ------ Update joint state ------
# This update has the same structure as the Rauch-Tung-Striebel smoother according to the article
Lt = C_ou_t.T.dot(np.linalg.inv(C_o_t)) # Kalman gain
mu_u_t = mu_u_t_minus_1 + Lt.dot(mu_e_t - mu_o_t)
C_u_t = C_u_t_minus_1 + Lt.dot(C_e_t - C_o_t).dot(Lt.T)
# u = [g, eta-]
# e = [sigma_n, g_t]
# z = [g, eta]
h = np.zeros((mu_e_t.shape[0],)) # Select first element of mu_e_t
h[0] = 1
# sigma_n = h.dot(mu_e_t)
mu_z_t = np.concatenate([mu_u_t, [h.dot(mu_e_t)]], axis=0)
C_z_t = np.asarray(np.bmat([
[C_u_t, (Lt.dot(C_e_t).dot(h.T)).reshape((-1,1))],
[(h.dot(C_e_t).dot(Lt.T)).reshape((1,-1)), np.array([h.dot(C_e_t).dot(h.T)]).reshape(1,1)]]))
self.mu_g_t = mu_z_t[:n_g]
self.C_g_t = C_z_t[:n_g, :n_g]
self.mu_eta_t = mu_z_t[n_g:]
self.C_eta_t = C_z_t[n_g:, n_g:]
#breakpoint()
# Use the updated hyperparameters
self.K.L = np.diag([np.exp(self.mu_eta_t[0])])
self.K.sigma_f = np.exp(self.mu_eta_t[1])
self.sigma_n = np.exp(self.mu_eta_t[2])
self.K.L = np.diag([self.mu_eta_t[0]])
self.K.sigma_f = self.mu_eta_t[1]
self.sigma_n = self.mu_eta_t[2]
self.theta = np.array([self.mu_eta_t[0], self.mu_eta_t[1], self.mu_eta_t[2]])
# These "precomputed" matrices need to be updated with the new hyperparameters as well
self.K_x = self.K.covariance_matrix(self.X, self.X) + self.sigma_n**2 * np.eye(self.X.shape[0]) # Covariance matrix over X
self.K_x_inv = np.linalg.inv(self.K_x) # Inverse of the covariance matrix over X
return mu_z_t, C_z_t
def __draw_sigma_points(self, mu : np.array, C : np.array) -> np.array:
"""
Draws sigma points from a Gaussian distribution using the unscented transform
"""
# --------- Unscented transform ---------
n = mu.shape[0] # State dimension of mu
w = np.empty((2*n+1,))
x = np.empty((2*n+1, n)) # 2n+1 sigma points in R^n
w[0] = 0.5
x[0,:] = mu
for i in range(n):
# index 1 to n
x[i+1,:] = mu + sqrtm(n/(1-w[0]) * C)[:,i] # ith collumn of the matrix sqrt
x[i+1+n,:] = mu - sqrtm(n/(1-w[0]) * C)[:,i] # ith collumn of the matrix sqrt
w[i+1] = (1-w[0])/(2*n)
w[i+1+n] = (1-w[0])/(2*n)
return w, x