-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathONMI.m
116 lines (95 loc) · 1.73 KB
/
ONMI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
function overlap_nmi = ONMI(X, Y)
%%
% X: N x KX; Y: N x KY;
% Detecting the overlapping and hierarchical
% community structure in complex networks
%%
[~, KX] = size(X);
KY = size(Y, 2);
X = X';
Y = Y';
HX = HXi(X);
HY = HXi(Y);
HX_Y = 0;
for i = 1:KX
tmp = HXiY(X(i, :), Y);
if tmp == Inf
tmp = HX(i);
end
tmp2 = HX(i);
if tmp2 == 0
tmp2 = 1;
end
HX_Y = HX_Y + tmp / tmp2;
end
HX_Y = HX_Y / KX;
HY_X = 0;
for i = 1:KY
tmp = HXiY(Y(i, :), X);
if tmp == Inf
tmp = HY(i);
end
tmp2 = HY(i);
if tmp2 == 0
tmp2 = 1;
end
HY_X = HY_X + tmp / tmp2;
end
HY_X = HY_X / KY;
overlap_nmi = 1 - 0.5 * (HX_Y + HY_X);
end
function hx_i = HXi(X)
[kx, n] = size(X);
hx_i = zeros(1, kx);
for i = 1:kx
xi = X(i, :);
cnt = sum(xi);
hx_i(i) = logEn(cnt, n) + logEn(n - cnt, n);
end
end
function ve = HXiY(Xi, Y)
ve = Inf;
m = size(Y, 1);
for j = 1:m
Yj = Y(j, :);
xi_yj = condition_entropy(Xi, Yj);
ve = min(ve, xi_yj);
end
end
function x_con_y = condition_entropy(x, y)
n = length(x);
a = 0;
b = 0;
c = 0;
d = 0;
for i = 1:n
if x(i) == 0 && y(i) == 0
a = a + 1;
elseif x(i) == 0 && y(i) == 1
b = b + 1;
elseif x(i) == 1 && y(i) == 0
c = c + 1;
else
d = d + 1;
end
end
an = logEn(a, n);
bn = logEn(b, n);
cn = logEn(c, n);
dn = logEn(d, n);
bdn = logEn(b + d, n);
acn = logEn(a + c, n);
if an + dn > bn + cn
x_con_y = an + bn + cn + dn - bdn - acn;
else
x_con_y = Inf;
end
end
function wn = logEn(w, n)
if w <= 0
wn = 0;
else
p = w * 1.0 / n;
wn = -p * log2(p);
end
end