forked from uncertainty-toolbox/uncertainty-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
312 lines (264 loc) · 10.2 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Metrics for assessing the quality of predictive uncertainty quantification.
"""
from typing import Any, Dict
import numpy as np
from uncertainty_toolbox.metrics_accuracy import prediction_error_metrics
from uncertainty_toolbox.metrics_calibration import (
root_mean_squared_calibration_error,
mean_absolute_calibration_error,
miscalibration_area,
adversarial_group_calibration,
sharpness,
)
from uncertainty_toolbox.metrics_scoring_rule import (
nll_gaussian,
crps_gaussian,
check_score,
interval_score,
)
METRIC_NAMES = {
"mae": "MAE",
"rmse": "RMSE",
"mdae": "MDAE",
"marpd": "MARPD",
"r2": "R2",
"corr": "Correlation",
"rms_cal": "Root-mean-squared Calibration Error",
"ma_cal": "Mean-absolute Calibration Error",
"miscal_area": "Miscalibration Area",
"sharp": "Sharpness",
"nll": "Negative-log-likelihood",
"crps": "CRPS",
"check": "Check Score",
"interval": "Interval Score",
"rms_adv_group_cal": ("Root-mean-squared Adversarial Group " "Calibration Error"),
"ma_adv_group_cal": "Mean-absolute Adversarial Group Calibration Error",
}
def get_all_accuracy_metrics(
y_pred: np.ndarray,
y_true: np.ndarray,
verbose: bool = True,
) -> Dict[str, float]:
"""Compute all accuracy metrics.
Args:
y_pred: 1D array of the predicted means for the held out dataset.
y_true: 1D array of the true labels in the held out dataset.
verbose: Activate verbose mode.
Returns:
The evaluations for all accuracy related metrics.
"""
if verbose:
print(" (1/n) Calculating accuracy metrics")
acc_metrics = prediction_error_metrics(y_pred, y_true)
return acc_metrics
def get_all_average_calibration(
y_pred: np.ndarray,
y_std: np.ndarray,
y_true: np.ndarray,
num_bins: int,
verbose: bool = True,
) -> Dict[str, float]:
"""Compute all metrics for average calibration.
Args:
y_pred: 1D array of the predicted means for the held out dataset.
y_std: 1D array of he predicted standard deviations for the held out dataset.
y_true: 1D array of the true labels in the held out dataset.
num_bins: The number of bins to use for discretization in some metrics.
verbose: Activate verbose mode.
Returns:
The evaluations for all metrics relating to average calibration.
"""
if verbose:
print(" (2/n) Calculating average calibration metrics")
cali_metrics = {}
cali_metrics["rms_cal"] = root_mean_squared_calibration_error(
y_pred, y_std, y_true, num_bins=num_bins
)
cali_metrics["ma_cal"] = mean_absolute_calibration_error(
y_pred, y_std, y_true, num_bins=num_bins
)
cali_metrics["miscal_area"] = miscalibration_area(
y_pred, y_std, y_true, num_bins=num_bins
)
return cali_metrics
def get_all_adversarial_group_calibration(
y_pred: np.ndarray,
y_std: np.ndarray,
y_true: np.ndarray,
num_bins: int,
verbose: bool = True,
) -> Dict[str, Dict[str, np.ndarray]]:
"""Compute all metrics for adversarial group calibration.
Args:
y_pred: 1D array of the predicted means for the held out dataset.
y_std: 1D array of he predicted standard deviations for the held out dataset.
y_true: 1D array of the true labels in the held out dataset.
num_bins: The number of bins to use for discretization in some metrics.
verbose: Activate verbose mode.
Returns:
The evaluations for all metrics relating to adversarial group calibration.
Each inner dictionary contains the size of each group and the metrics
computed for each group.
"""
adv_group_cali_metrics = {}
if verbose:
print(" (3/n) Calculating adversarial group calibration metrics")
print(" [1/2] for mean absolute calibration error")
ma_adv_group_cali = adversarial_group_calibration(
y_pred,
y_std,
y_true,
cali_type="mean_abs",
num_bins=num_bins,
verbose=verbose,
)
ma_adv_group_size = ma_adv_group_cali.group_size
ma_adv_group_cali_score_mean = ma_adv_group_cali.score_mean
ma_adv_group_cali_score_stderr = ma_adv_group_cali.score_stderr
adv_group_cali_metrics["ma_adv_group_cal"] = {
"group_sizes": ma_adv_group_size,
"adv_group_cali_mean": ma_adv_group_cali_score_mean,
"adv_group_cali_stderr": ma_adv_group_cali_score_stderr,
}
if verbose:
print(" [2/2] for root mean squared calibration error")
rms_adv_group_cali = adversarial_group_calibration(
y_pred,
y_std,
y_true,
cali_type="root_mean_sq",
num_bins=num_bins,
verbose=verbose,
)
rms_adv_group_size = rms_adv_group_cali.group_size
rms_adv_group_cali_score_mean = rms_adv_group_cali.score_mean
rms_adv_group_cali_score_stderr = rms_adv_group_cali.score_stderr
adv_group_cali_metrics["rms_adv_group_cal"] = {
"group_sizes": rms_adv_group_size,
"adv_group_cali_mean": rms_adv_group_cali_score_mean,
"adv_group_cali_stderr": rms_adv_group_cali_score_stderr,
}
return adv_group_cali_metrics
def get_all_sharpness_metrics(
y_std: np.ndarray,
verbose: bool = True,
) -> Dict[str, float]:
"""Compute all sharpness metrics
Args:
y_std: 1D array of he predicted standard deviations for the held out dataset.
verbose: Activate verbose mode.
Returns:
The evaluations for all sharpness metrics.
"""
if verbose:
print(" (4/n) Calculating sharpness metrics")
sharp_metrics = {}
sharp_metrics["sharp"] = sharpness(y_std)
return sharp_metrics
def get_all_scoring_rule_metrics(
y_pred: np.ndarray,
y_std: np.ndarray,
y_true: np.ndarray,
resolution: int,
scaled: bool,
verbose: bool = True,
) -> Dict[str, float]:
"""Compute all scoring rule metrics
Args:
y_pred: 1D array of the predicted means for the held out dataset.
y_std: 1D array of he predicted standard deviations for the held out dataset.
y_true: 1D array of the true labels in the held out dataset.
resolution: The number of quantiles to use for computation.
scaled: Whether to scale the score by size of held out set.
verbose: Activate verbose mode.
Returns:
The computed scoring rule metrics.
"""
if verbose:
print(" (n/n) Calculating proper scoring rule metrics")
sr_metrics = {}
sr_metrics["nll"] = nll_gaussian(y_pred, y_std, y_true, scaled=scaled)
sr_metrics["crps"] = crps_gaussian(y_pred, y_std, y_true, scaled=scaled)
sr_metrics["check"] = check_score(
y_pred, y_std, y_true, scaled=scaled, resolution=resolution
)
sr_metrics["interval"] = interval_score(
y_pred, y_std, y_true, scaled=scaled, resolution=resolution
)
return sr_metrics
def _print_adversarial_group_calibration(adv_group_metric_dic, print_group_num=3):
for a_group_cali_type, a_group_cali_dic in adv_group_metric_dic.items():
num_groups = a_group_cali_dic["group_sizes"].shape[0]
print_idxs = [int(x) for x in np.linspace(1, num_groups - 1, print_group_num)]
print(" {}".format(METRIC_NAMES[a_group_cali_type]))
for idx in print_idxs:
print(
" Group Size: {:.2f} -- Calibration Error: {:.3f}".format(
a_group_cali_dic["group_sizes"][idx],
a_group_cali_dic["adv_group_cali_mean"][idx],
)
)
def get_all_metrics(
y_pred: np.ndarray,
y_std: np.ndarray,
y_true: np.ndarray,
num_bins: int = 100,
resolution: int = 99,
scaled: bool = True,
verbose: bool = True,
) -> Dict[str, Any]:
"""Compute all metrics.
Args:
y_pred: 1D array of the predicted means for the held out dataset.
y_std: 1D array of he predicted standard deviations for the held out dataset.
y_true: 1D array of the true labels in the held out dataset.
num_bins: The number of bins to use for discretization in some metrics.
resolution: The number of quantiles to use for computation.
scaled: Whether to scale the score by size of held out set.
verbose: Activate verbose mode.
Returns:
Dictionary containing all metrics.
"""
# Accuracy
accuracy_metrics = get_all_accuracy_metrics(y_pred, y_true, verbose)
# Calibration
calibration_metrics = get_all_average_calibration(
y_pred, y_std, y_true, num_bins, verbose
)
# Adversarial Group Calibration
adv_group_cali_metrics = get_all_adversarial_group_calibration(
y_pred, y_std, y_true, num_bins, verbose
)
# Sharpness
sharpness_metrics = get_all_sharpness_metrics(y_std, verbose)
# Proper Scoring Rules
scoring_rule_metrics = get_all_scoring_rule_metrics(
y_pred, y_std, y_true, resolution, scaled, verbose
)
# Print all outputs
if verbose:
print("**Finished Calculating All Metrics**")
print("\n")
print(" Accuracy Metrics ".center(60, "="))
for acc_metric, acc_val in accuracy_metrics.items():
print(" {:<13} {:.3f}".format(METRIC_NAMES[acc_metric], acc_val))
print(" Average Calibration Metrics ".center(60, "="))
for cali_metric, cali_val in calibration_metrics.items():
print(" {:<37} {:.3f}".format(METRIC_NAMES[cali_metric], cali_val))
print(" Adversarial Group Calibration Metrics ".center(60, "="))
_print_adversarial_group_calibration(adv_group_cali_metrics, print_group_num=3)
print(" Sharpness Metrics ".center(60, "="))
for sharp_metric, sharp_val in sharpness_metrics.items():
print(" {:} {:.3f}".format(METRIC_NAMES[sharp_metric], sharp_val))
print(" Scoring Rule Metrics ".center(60, "="))
for sr_metric, sr_val in scoring_rule_metrics.items():
print(" {:<25} {:.3f}".format(METRIC_NAMES[sr_metric], sr_val))
all_scores = {
"accuracy": accuracy_metrics,
"avg_calibration": calibration_metrics,
"adv_group_calibration": adv_group_cali_metrics,
"sharpness": sharpness_metrics,
"scoring_rule": scoring_rule_metrics,
}
return all_scores