-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathtest_utils.py
181 lines (138 loc) · 5.51 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from utils import get_filtered_lidar, project_velo2rgb, draw_rgb_projections
from config import config as cfg
from data.kitti import KittiDataset
import torch.utils.data as data
from nms.pth_nms import pth_nms
import torch.nn.functional as F
import numpy as np
import torch.backends.cudnn
import cv2
import matplotlib.pyplot as plt
torch.backends.cudnn.benchmark=True
torch.backends.cudnn.enabled=True
def delta_to_boxes3d(deltas, anchors):
# Input:
# deltas: (N, w, l, 14)
# feature_map_shape: (w, l)
# anchors: (w, l, 2, 7)
# Ouput:
# boxes3d: (N, w*l*2, 7)
N = deltas.shape[0]
deltas = deltas.view(N, -1, 7)
anchors = torch.FloatTensor(anchors)
boxes3d = torch.zeros_like(deltas)
if deltas.is_cuda:
anchors = anchors.cuda()
boxes3d = boxes3d.cuda()
anchors_reshaped = anchors.view(-1, 7)
anchors_d = torch.sqrt(anchors_reshaped[:, 4]**2 + anchors_reshaped[:, 5]**2)
anchors_d = anchors_d.repeat(N, 2, 1).transpose(1,2)
anchors_reshaped = anchors_reshaped.repeat(N, 1, 1)
boxes3d[..., [0, 1]] = torch.mul(deltas[..., [0, 1]], anchors_d) + anchors_reshaped[..., [0, 1]]
boxes3d[..., [2]] = torch.mul(deltas[..., [2]], anchors_reshaped[...,[3]]) + anchors_reshaped[..., [2]]
boxes3d[..., [3, 4, 5]] = torch.exp(
deltas[..., [3, 4, 5]]) * anchors_reshaped[..., [3, 4, 5]]
boxes3d[..., 6] = deltas[..., 6] + anchors_reshaped[..., 6]
return boxes3d
def detection_collate(batch):
lidars = []
images = []
calibs = []
targets = []
pos_equal_ones=[]
ids = []
for i, sample in enumerate(batch):
lidars.append(sample[0])
images.append(sample[1])
calibs.append(sample[2])
targets.append(sample[3])
pos_equal_ones.append(sample[4])
ids.append(sample[5])
return lidars,images,calibs,\
torch.cuda.FloatTensor(np.array(targets)), \
torch.cuda.FloatTensor(np.array(pos_equal_ones)),\
ids
def box3d_center_to_corner_batch(boxes_center):
# (N, 7) -> (N, 8, 3)
N = boxes_center.shape[0]
ret = torch.zeros((N, 8, 3))
if boxes_center.is_cuda:
ret = ret.cuda()
for i in range(N):
box = boxes_center[i]
translation = box[0:3]
size = box[3:6]
rotation = [0, 0, box[-1]]
h, w, l = size[0], size[1], size[2]
trackletBox = torch.FloatTensor([ # in velodyne coordinates around zero point and without orientation yet
[-l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2], \
[w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2], \
[0, 0, 0, 0, h, h, h, h]])
if boxes_center.is_cuda:
trackletBox = trackletBox.cuda()
# re-create 3D bounding box in velodyne coordinate system
yaw = rotation[2]
rotMat = torch.FloatTensor([
[np.cos(yaw), -np.sin(yaw), 0.0],
[np.sin(yaw), np.cos(yaw), 0.0],
[0.0, 0.0, 1.0]])
if boxes_center.is_cuda:
rotMat = rotMat.cuda()
cornerPosInVelo = torch.mm(rotMat, trackletBox) + translation.repeat(8, 1).t()
box3d = cornerPosInVelo.transpose(0,1)
ret[i] = box3d
return ret
def box3d_corner_to_top_batch(boxes3d, use_min_rect=True):
# [N,8,3] -> [N,4,2] -> [N,8]
box3d_top=[]
num =len(boxes3d)
for n in range(num):
b = boxes3d[n]
x0 = b[0,0]
y0 = b[0,1]
x1 = b[1,0]
y1 = b[1,1]
x2 = b[2,0]
y2 = b[2,1]
x3 = b[3,0]
y3 = b[3,1]
box3d_top.append([x0,y0,x1,y1,x2,y2,x3,y3])
if use_min_rect:
box8pts = torch.FloatTensor(np.array(box3d_top))
if boxes3d.is_cuda:
box8pts = box8pts.cuda()
min_rects = torch.zeros((box8pts.shape[0], 4))
if boxes3d.is_cuda:
min_rects = min_rects.cuda()
# calculate minimum rectangle
min_rects[:, 0] = torch.min(box8pts[:, [0, 2, 4, 6]], dim=1)[0]
min_rects[:, 1] = torch.min(box8pts[:, [1, 3, 5, 7]], dim=1)[0]
min_rects[:, 2] = torch.max(box8pts[:, [0, 2, 4, 6]], dim=1)[0]
min_rects[:, 3] = torch.max(box8pts[:, [1, 3, 5, 7]], dim=1)[0]
return min_rects
return box3d_top
def draw_boxes(reg, prob, images, calibs, ids, tag):
prob = prob.view(cfg.N, -1)
batch_boxes3d = delta_to_boxes3d(reg, cfg.anchors)
mask = torch.gt(prob, cfg.score_threshold)
mask_reg = mask.unsqueeze(2).repeat(1, 1, 7)
for batch_id in range(cfg.N):
boxes3d = torch.masked_select(batch_boxes3d[batch_id], mask_reg[batch_id]).view(-1, 7)
scores = torch.masked_select(prob[batch_id], mask[batch_id])
image = images[batch_id]
calib = calibs[batch_id]
id = ids[batch_id]
if len(boxes3d) != 0:
boxes3d_corner = box3d_center_to_corner_batch(boxes3d)
boxes2d = box3d_corner_to_top_batch(boxes3d_corner)
boxes2d_score = torch.cat((boxes2d, scores.unsqueeze(1)), dim=1)
# NMS
keep = pth_nms(boxes2d_score, cfg.nms_threshold)
boxes3d_corner_keep = boxes3d_corner[keep]
print("No. %d objects detected" % len(boxes3d_corner_keep))
rgb_2D = project_velo2rgb(boxes3d_corner_keep, calib)
img_with_box = draw_rgb_projections(image, rgb_2D, color=(0, 0, 255), thickness=1)
cv2.imwrite('results/%s_%s.png' % (id,tag), img_with_box)
else:
cv2.imwrite('results/%s_%s.png' % (id,tag), image)
print("No objects detected")