-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunCALICO.py
299 lines (259 loc) · 13 KB
/
runCALICO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from pathlib import Path
import re
from tqdm import tqdm
import pandas as pd
from cell_analysis_tools.io import load_image
from cell_analysis_tools.flim import regionprops_omi_stain as reg
#%% Inputs
'''This should be the only section where you should need to make changes'''
path_dataset = Path(r'C:\Users\jriendeau\Desktop\test')
mask_suffix = 'n_photons_cellmask.tif'
#What data in addition to NADH would you like to analyze?
FAD = True
Stain_intensity = True
Stain_lifetime = True
Intensity_weighted_means = False
other_props = ['area', 'eccentricity']
#can also be empty or select more from here:
#https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops
#%% This finds your file paths for EACH image so you don't have to input everything
file_suffixes = {
'mask': mask_suffix,
'photons': '_photons.tiff',
'a1[%]': '_a1\[%\].tiff',
'a2[%]': '_a2\[%\].tiff',
't1': '_t1.tiff',
't2': '_t2.tiff',
'chi': '_chi.tiff',
'sdt': '.sdt',
}
standard_dictionary = {
# Mask file
"mask" : "",
# NADH files
"nadh_photons" : "",
"nadh_a1" : "",
"nadh_a2" : "",
"nadh_t1" : "",
"nadh_t2" : "",
# FAD files
"fad_photons" : "",
"fad_a1" : "",
"fad_a2" : "",
"fad_t1" : "",
"fad_t2" : "",
# Stain files
"stain_photons" : "",
"stain_a1" : "",
"stain_a2" : "",
"stain_t1" : "",
"stain_t2" : "",
}
# GET LIST OF ALL FILES FOR REGEX
list_all_files = list(path_dataset.rglob("*"))
list_str_all_files = [str(b) for b in list_all_files]
list_all_nadh_photons_images = list(filter(re.compile("n" + file_suffixes["photons"]).search, list_str_all_files ))
dict_dir = {}
for path_str_im_photons in tqdm(list_all_nadh_photons_images, desc='Assembling file dictionary'):
pass
# generate dict name
path_im_photons_nadh = Path(path_str_im_photons)
handle_im = path_im_photons_nadh.stem.rsplit('n_', 1)[0]
dict_dir[handle_im] = standard_dictionary.copy()
# NADH
handle_nadh = handle_im + "n"
# paths to NADH files
dict_dir[handle_im]["nadh_photons"] = list(filter(re.compile(handle_nadh + file_suffixes['photons']).search, list_str_all_files))[0]
dict_dir[handle_im]["nadh_a1"] = list(filter(re.compile(handle_nadh + file_suffixes['a1[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["nadh_a2"] = list(filter(re.compile(handle_nadh + file_suffixes['a2[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["nadh_t1"] = list(filter(re.compile(handle_nadh + file_suffixes['t1']).search, list_str_all_files))[0]
dict_dir[handle_im]["nadh_t2"] = list(filter(re.compile(handle_nadh + file_suffixes['t2']).search, list_str_all_files))[0]
# MASKS
try:
dict_dir[handle_im]["mask"] = list(filter(re.compile(handle_im + file_suffixes['mask']).search, list_str_all_files))[0]
except IndexError:
print(f"{handle_im} | mask missing")
del dict_dir[handle_im]
continue
# locate corresponding FAD photons image
if FAD==True:
try:
path_str_im_photons_fad = list(filter(re.compile(handle_im + "f" + file_suffixes["photons"]).search, list_str_all_files))[0]
except IndexError:
print(f"{handle_im} | FAD files missing")
del dict_dir[handle_im]
continue
path_im_photons_fad = Path(path_str_im_photons_fad)
handle_fad = handle_im + "f"
# paths to FAD files
dict_dir[handle_im]["fad_photons"] = list(filter(re.compile(handle_fad + file_suffixes['photons']).search, list_str_all_files))[0]
dict_dir[handle_im]["fad_a1"] = list(filter(re.compile(handle_fad + file_suffixes['a1[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["fad_a2"] = list(filter(re.compile(handle_fad + file_suffixes['a2[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["fad_t1"] = list(filter(re.compile(handle_fad + file_suffixes['t1']).search, list_str_all_files))[0]
dict_dir[handle_im]["fad_t2"] = list(filter(re.compile(handle_fad + file_suffixes['t2']).search, list_str_all_files))[0]
# locate corresponding Stain photons image
if Stain_intensity==True:
try:
path_str_im_photons_stain = list(filter(re.compile(handle_im + "r" + file_suffixes["photons"]).search, list_str_all_files))[0] ###################################
except IndexError:
print(f"{handle_im} | Stain files missing")
del dict_dir[handle_im]
continue
path_im_photons_fad = Path(path_str_im_photons_stain)
handle_stain = handle_im + "r"
dict_dir[handle_im]["stain_photons"] = list(filter(re.compile(handle_stain).search, list_str_all_files))[0]
if Stain_lifetime==True:
dict_dir[handle_im]["stain_a1"] = list(filter(re.compile(handle_stain + file_suffixes['a1[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["stain_a2"] = list(filter(re.compile(handle_stain + file_suffixes['a2[%]']).search, list_str_all_files))[0]
dict_dir[handle_im]["stain_t1"] = list(filter(re.compile(handle_stain + file_suffixes['t1']).search, list_str_all_files))[0]
dict_dir[handle_im]["stain_t2"] = list(filter(re.compile(handle_stain + file_suffixes['t2']).search, list_str_all_files))[0]
df_paths = pd.DataFrame(dict_dir).transpose()
df_paths.index.name = "base"
#%% load csv dicts with path sets
# iterate through rows(image sets) in dataframe,
outputs = pd.DataFrame()
for base, row_data in tqdm(list(df_paths.iterrows()), desc='Analyzing images'): # iterate through sets in csv file
pass
# load mask image
label_image = load_image(Path(str(row_data['mask'])))
# load NADH images
im_nadh_intensity = load_image(Path(str(row_data.nadh_photons)))
im_nadh_a1 = load_image(Path(str(row_data.nadh_a1)))
im_nadh_a2 = load_image(Path(str(row_data.nadh_a2)))
im_nadh_t1 = load_image(Path(str(row_data.nadh_t1)))
im_nadh_t2 = load_image(Path(str(row_data.nadh_t2)))
# load FAD images
if FAD == True:
im_fad_intensity = load_image(Path(str(row_data.fad_photons)))
im_fad_a1 = load_image(Path(str(row_data.fad_a1)))
im_fad_a2 = load_image(Path(str(row_data.fad_a2)))
im_fad_t1 = load_image(Path(str(row_data.fad_t1)))
im_fad_t2 = load_image(Path(str(row_data.fad_t2)))
# load RED image
if Stain_intensity == True:
im_stain_intensity = load_image(Path(str(row_data.stain_photons)))
if Stain_lifetime == True:
im_stain_a1 = load_image(Path(str(row_data.stain_a1)))
im_stain_a2 = load_image(Path(str(row_data.stain_a2)))
im_stain_t1 = load_image(Path(str(row_data.stain_t1)))
im_stain_t2 = load_image(Path(str(row_data.stain_t2)))
# compute ROI props
if FAD==True and Stain_intensity==True and Stain_lifetime==True:
omi_props = reg.regionprops_omi_run(
Intensity_weighted_means = Intensity_weighted_means,
FAD = FAD,
Stain_intensity = Stain_intensity,
Stain_lifetime = Stain_lifetime,
image_id = base,
label_image = label_image,
im_nadh_intensity = im_nadh_intensity,
im_nadh_a1 = im_nadh_a1,
im_nadh_a2 = im_nadh_a2,
im_nadh_t1 = im_nadh_t1,
im_nadh_t2 = im_nadh_t2,
im_fad_intensity = im_fad_intensity,
im_fad_a1 = im_fad_a1,
im_fad_a2 = im_fad_a2,
im_fad_t1 = im_fad_t1,
im_fad_t2 = im_fad_t2,
im_stain_intensity = im_stain_intensity,
im_stain_a1 = im_stain_a1,
im_stain_a2 = im_stain_a2,
im_stain_t1 = im_stain_t1,
im_stain_t2 = im_stain_t2,
other_props=other_props
)
if FAD==True and Stain_intensity==True and Stain_lifetime==False:
omi_props = reg.regionprops_omi_run(
Intensity_weighted_means = Intensity_weighted_means,
FAD = FAD,
Stain_intensity = Stain_intensity,
Stain_lifetime = Stain_lifetime,
image_id = base,
label_image = label_image,
im_nadh_intensity = im_nadh_intensity,
im_nadh_a1 = im_nadh_a1,
im_nadh_a2 = im_nadh_a2,
im_nadh_t1 = im_nadh_t1,
im_nadh_t2 = im_nadh_t2,
im_fad_intensity = im_fad_intensity,
im_fad_a1 = im_fad_a1,
im_fad_a2 = im_fad_a2,
im_fad_t1 = im_fad_t1,
im_fad_t2 = im_fad_t2,
im_stain_intensity = im_stain_intensity,
other_props=other_props
)
if FAD==True and Stain_intensity==False and Stain_lifetime==False:
omi_props = reg.regionprops_omi_run(
Intensity_weighted_means = Intensity_weighted_means,
FAD = FAD,
Stain_intensity = Stain_intensity,
Stain_lifetime = Stain_lifetime,
image_id = base,
label_image = label_image,
im_nadh_intensity = im_nadh_intensity,
im_nadh_a1 = im_nadh_a1,
im_nadh_a2 = im_nadh_a2,
im_nadh_t1 = im_nadh_t1,
im_nadh_t2 = im_nadh_t2,
im_fad_intensity = im_fad_intensity,
im_fad_a1 = im_fad_a1,
im_fad_a2 = im_fad_a2,
im_fad_t1 = im_fad_t1,
im_fad_t2 = im_fad_t2,
other_props=other_props
)
if FAD==False and Stain_intensity==False and Stain_lifetime==False:
omi_props = reg.regionprops_omi_run(
Intensity_weighted_means = Intensity_weighted_means,
FAD = FAD,
Stain_intensity = Stain_intensity,
Stain_lifetime = Stain_lifetime,
image_id = base,
label_image = label_image,
im_nadh_intensity = im_nadh_intensity,
im_nadh_a1 = im_nadh_a1,
im_nadh_a2 = im_nadh_a2,
im_nadh_t1 = im_nadh_t1,
im_nadh_t2 = im_nadh_t2,
other_props=other_props
)
if FAD==False and Stain_intensity==False and Stain_lifetime==False:
omi_props = reg.regionprops_omi_run(
Intensity_weighted_means = Intensity_weighted_means,
FAD = FAD,
Stain_intensity = Stain_intensity,
Stain_lifetime = Stain_lifetime,
image_id = base,
label_image = label_image,
im_nadh_intensity = im_nadh_intensity,
im_nadh_a1 = im_nadh_a1,
im_nadh_a2 = im_nadh_a2,
im_nadh_t1 = im_nadh_t1,
im_nadh_t2 = im_nadh_t2,
other_props=other_props
)
#create dataframe
df = pd.DataFrame(omi_props).transpose()
df.index.name = "base"
# add other dictionary data to df
df["base"] = base
for item_key in row_data.keys():
df[item_key] = row_data[item_key]
# combine all image data into one csv
outputs = pd.concat([outputs, df], axis=0)
pass
#%% Final df manipulations before export
if 'stdev' in outputs.columns:
stdev_columns = [col for col in df.columns if 'stdev' in col.lower()]
outputs.drop(columns=stdev_columns, inplace=True) #removes stdev columns
pass
elif 'weighted' in outputs.columns:
weighted_columns = [col for col in df.columns if 'weighted' in col.lower()]
outputs.drop(columns=weighted_columns, inplace=True) #removes intensity weighted columns
pass
# remove path files from outputs csv
outputs = outputs.iloc[:,:outputs.columns.get_loc("mask")]
# finally.. export data
outputs.to_csv(path_dataset/ f"{path_dataset.stem}_features.csv")