forked from sangnekim/erAIser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing_davis.py
505 lines (387 loc) · 18.3 KB
/
preprocessing_davis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import os
from glob import glob
import matplotlib.pyplot as plt
import cv2
import numpy as np
from PIL import Image
from PIL import ImageDraw
from matplotlib.pyplot import figure, imshow, axis
from matplotlib.image import imread
import matplotlib.animation as animation
from IPython.display import HTML
import imageio
import numpy as np
from skimage import img_as_ubyte
from preprocessing_aanet import *
def crop_video_using_path(video_dir, anno_dir, masking=False,
return_original=False, mod='park', expand_bbox=False): # annotation이 존재하는 데이터의 경우에만 사용 가능하다.
train_size=384 # 384 x 384. train_size<480.
crop_size=train_size
width,height=854, 480
images_path=glob(os.path.join(video_dir, '*.jpg'))
annos_path=glob(os.path.join(anno_dir, '*.png'))
# 이미지 순서 정렬
images_path.sort()
annos_path.sort()
new_images=[]
#일단 다 받아보자.
if return_original==True:
images=[]
annotations=[]
new_annotations=[]
bboxes=[]
if expand_bbox:
for i in range(len(images_path)):
anno_image=cv2.imread(annos_path[i], cv2.COLOR_RGB2GRAY)
try:
x,y,w,h=get_bbox(anno_image, mod=mod)
except NameError as e: # e : 'no bbox in image', bounding box가 없는 경우 get_bbox에서 오류가 뜰 수 있다.
print(e, annos_path[idx])
pass # 이전 frame의 좌표 사용
if w > train_size or h > train_size:
crop_size=min((width, height)) # 거의 480
# print('expand bbox to size ', crop_size)
break
for idx, image_path in enumerate(images_path):
image=plt.imread(image_path)
anno_image=cv2.imread(annos_path[idx], cv2.COLOR_BGR2GRAY)
try:
x,y,w,h=get_bbox(anno_image, mod) # 바운딩 박스의 xmin, ymin과 크기.
except NameError as e: # e : 'no bbox in image', bounding box가 없는 경우 get_bbox에서 오류가 뜰 수 있다.
print(e, annos_path[idx])
pass # 이전 frame의 좌표 사용
if masking==True:
new_image, new_annotation=crop_image_by_bbox(image, anno_image, bbox=(x,y,w,h), train_size=train_size, crop_size=crop_size, return_mask=masking)
new_image=mask_image(new_image, new_annotation)
new_images.append(new_image)
else:
new_image=crop_image_by_bbox(image, anno_image, bbox=(x,y,w,h), train_size=train_size,crop_size=crop_size, return_mask=masking)
new_images.append(new_image)
if return_original==True:
images.append(image)
annotations.append(anno_image)
new_annotations.append(new_annotation)
bboxes.append(bbox2squared([x,y,w,h], train_size, (width, height)))
if return_original==True:
return new_images, images, annotations, new_annotations, bboxes
else:
return new_images # 반환은 np.array형태로.
def convert_ds_to_squared_video(train_ds_dir, train_save_dir=False, test_save_dir=False, test=False, save=False, sp=0, masking=False, inference=False, expand_bbox=True):
print('Masking : ', str(masking), '...')
train_ds_anno_dir=os.path.join(train_ds_dir, sub_anno_dir)
train_ds_image_dir=os.path.join(train_ds_dir, sub_image_dir)
assert(os.listdir(train_ds_anno_dir)==os.listdir(train_ds_image_dir))
train_ds_videos=os.listdir(train_ds_anno_dir)
train_num=len(train_ds_videos)-len(train_ds_videos)//20 # 5%만 test로..
if test==False:
print(f'start, for train, numer of video : {train_num}')
videos=train_ds_videos[sp:train_num]
save_dir=train_save_dir
else:
print(f'start, for test, video : {len(train_ds_videos)-train_num}')
videos=train_ds_videos[sp+train_num:]
save_dir=test_save_dir
count=0
for i, video in enumerate(videos):
print(sp+i, '번째 video -->', video)
if save==False:
if i!=inference:
continue
count+=1
if count%5==0:
if test==False:
print(f'processing...({count}/{train_num})')
else:
print(f'processing...({count}/{len(train_ds_videos)//20})')
train_ds_image_ex_dir=os.path.join(train_ds_image_dir, video)
train_ds_anno_ex_dir=os.path.join(train_ds_anno_dir, video)
#print(os.path.join(train_ds_image_dir, video))
#print(os.path.join(train_ds_anno_dir, video))
train_ds_images_path=glob(os.path.join(train_ds_image_ex_dir, '*.jpg'))
train_ds_images_path.sort()
# train_ds_annos_path=glob(os.path.join(train_ds_anno_ex_dir, '*.png'))
train_ds_images_name=[path.split('/')[-1].split('.')[0] for path in train_ds_images_path]
# print(train_ds_anno_ex_dir)
new_images=crop_video_using_path(train_ds_image_ex_dir, train_ds_anno_ex_dir, mod='park', masking=masking, expand_bbox=expand_bbox)
if save==False:
return new_images
# 저장
if not os.path.exists(os.path.join(save_dir, video)):
os.mkdir(os.path.join(save_dir, video))
# train
for idx, new_image in enumerate(new_images):
imageio.imwrite(os.path.join(save_dir, video, train_ds_images_name[idx]+'.png'), new_image)
# plt.imsave(os.path.join(save_dir, video, train_ds_images_name[idx]+'.png'), new_image)
if count%5==0:
print('save... --> ', os.path.join(save_dir, video))
# New instance dataset of DAVIS
def convert_ds_to_squared_video_by_instance(train_ds_dir, train_save_dir=False, test_save_dir=False,
test=False, save=False, sp=0, masking=False, inference=False, expand_bbox=True):
print('Masking : ', str(masking), '...')
train_ds_anno_dir=os.path.join(train_ds_dir, sub_anno_dir)
train_ds_image_dir=os.path.join(train_ds_dir, sub_image_dir)
# Human folder와 맞춰주기.
new_train_ds_image_dir=[]
for image_dir in os.listdir(train_ds_image_dir):
if image_dir in os.listdir(train_ds_anno_dir):
new_train_ds_image_dir.append(image_dir)
# new_train_ds_image_dir.sort()
assert(new_train_ds_image_dir==os.listdir(train_ds_anno_dir))
train_ds_videos=os.listdir(train_ds_anno_dir)
train_num=len(train_ds_videos)-len(train_ds_videos)//20 # 5%만 test로..
if test==False:
print(f'start, for train, numer of video : {train_num}')
videos=train_ds_videos[sp:train_num]
save_dir=train_save_dir
else:
print(f'start, for test, video : {len(train_ds_videos)-train_num}')
videos=train_ds_videos[sp+train_num:]
save_dir=test_save_dir
count=0
for i, video in enumerate(videos):
print(sp+i, '번째 video -->', video)
if save==False:
if i!=inference:
continue
count+=1
if count%5==0:
if test==False:
print(f'processing...({count}/{train_num})')
else:
print(f'processing...({count}/{len(train_ds_videos)//20})')
train_ds_image_ex_dir=os.path.join(train_ds_image_dir, video)
train_ds_anno_ex_dir=os.path.join(train_ds_anno_dir, video)
#print(os.path.join(train_ds_image_dir, video))
#print(os.path.join(train_ds_anno_dir, video))
train_ds_images_path=glob(os.path.join(train_ds_image_ex_dir, '*.jpg'))
train_ds_images_path.sort()
# train_ds_annos_path=glob(os.path.join(train_ds_anno_ex_dir, '*.png'))
train_ds_images_name=[path.split('/')[-1].split('.')[0] for path in train_ds_images_path]
# print(train_ds_anno_ex_dir)
new_videos=crop_video_using_path_by_instance(train_ds_image_ex_dir, train_ds_anno_ex_dir, mod='park', masking=masking, expand_bbox=expand_bbox)
if save==False:
return new_videos
instance_videos=os.listdir(train_ds_anno_ex_dir)
for num_instance, instance_video in enumerate(instance_videos):
# 저장
if not os.path.exists(os.path.join(save_dir, instance_video)):
os.mkdir(os.path.join(save_dir, instance_video))
for idx, new_image in enumerate(new_videos[num_instance]):
imageio.imwrite(os.path.join(save_dir, instance_video, train_ds_images_name[idx]+'.png'), new_image)
# plt.imsave(os.path.join(save_dir, instance_video, train_ds_images_name[idx]+'.png'), new_image)
if count%5==0:
print('save... --> ', os.path.join(save_dir, instance_video))
def crop_video_using_path_by_instance(video_dir, annos_dir, masking=False,
return_original=False, mod='park', expand_bbox=False): # annotation이 존재하는 데이터의 경우에만 사용 가능하다.
# anno_dir 내부에 sub directory들이 존재한다.
print(annos_dir)
new_videos=[]
for instance in range(len(os.listdir(annos_dir))):
anno_dir=glob(os.path.join(annos_dir, '*'))[instance]
train_size=384 # 384 x 384. train_size<480.
crop_size=train_size
width,height=854, 480
images_path=glob(os.path.join(video_dir, '*.jpg'))
annos_path=glob(os.path.join(anno_dir, '*.png'))
# 이미지 순서 정렬
images_path.sort()
annos_path.sort()
new_images=[]
#일단 다 받아보자.
if return_original==True:
images=[]
annotations=[]
new_annotations=[]
bboxes=[]
if expand_bbox:
for i in range(len(images_path)):
# print(annos_path)
anno_image=cv2.imread(annos_path[i], cv2.COLOR_RGB2GRAY)
try:
x,y,w,h=get_bbox(anno_image, mod=mod)
except NameError as e: # e : 'no bbox in image', bounding box가 없는 경우 get_bbox에서 오류가 뜰 수 있다.
print(e, annos_path[i])
pass # 이전 frame의 좌표 사용
if w > train_size or h > train_size:
crop_size=min((width, height)) # 거의 480
print('expand bbox to size ', crop_size)
break
for idx, image_path in enumerate(images_path):
image=plt.imread(image_path)
anno_image=cv2.imread(annos_path[idx], cv2.COLOR_BGR2GRAY)
try:
x,y,w,h=get_bbox(anno_image, mod) # 바운딩 박스의 xmin, ymin과 크기.
except NameError as e: # e : 'no bbox in image', bounding box가 없는 경우 get_bbox에서 오류가 뜰 수 있다.
print(e, annos_path[idx])
pass # 이전 frame의 좌표 사용
if masking==True:
new_image, new_annotation=crop_image_by_bbox(image, anno_image, bbox=(x,y,w,h), train_size=train_size, crop_size=crop_size, return_mask=masking)
new_image=mask_image(new_image, new_annotation)
new_images.append(new_image)
else:
new_image=crop_image_by_bbox(image, anno_image, bbox=(x,y,w,h), train_size=train_size,crop_size=crop_size, return_mask=masking)
new_images.append(new_image)
if return_original==True:
images.append(image)
annotations.append(anno_image)
new_annotations.append(new_annotation)
bboxes.append(bbox2squared([x,y,w,h], train_size, (width, height)))
new_videos.append(new_images)
if return_original==True:
return new_videos, images, annotations, new_annotations, bboxes
else:
return new_videos # 반환은 np.array형태로.
def save_person(train_dir, mode='person1', plus4_save_eigen=False, save_dir=False, plus4_inference=False):
# mode : person1, people2, people3
# category name
cat_name=train_dir.split('/')[-1]
images_path=glob(os.path.join(train_dir, '*'))
images_path.sort()
ims=[]
ims_names=[]
for image_path in images_path:
im_name=image_path.split('/')[-1]
ims_names.append(im_name)
im=cv2.imread(image_path)
ims.append(im)
new_ims=[]
if mode=='person1':
new_ims=ims
elif mode=='people2':
for im in ims:
new_im=prep_2person(im)
new_ims.append(new_im)
elif mode=='people3':
remove_channel, eigen_values=cal_objectnum(ims, mode='people3')
for im in ims:
new_im=prep_3person(im, remove_channel, eigen_values)
new_ims.append(new_im)
elif mode=='people_many':
new_eigens=[]
len_eigens=[]
eigen_values=cal_objectnum(ims, mode='people4')
for im in ims:
if plus4_inference:
new_im, new_eigen, len_eigen=prep_4plus_people(im, eigen_values, plus4_save_eigen=plus4_save_eigen, inference=plus4_inference,
save_dir=save_dir)
new_ims.append(new_im)
new_eigens.append(new_eigen)
len_eigens.append(len_eigen)
else:
new_im=prep_4plus_people(im, eigen_values, plus4_save_eigen=plus4_save_eigen, save_dir=save_dir)
new_ims.append(new_im)
if save_dir==False:
if plus4_inference:
print('mode : ', mode, 'name : ', cat_name, ' ; no save - return : images ', 'plus4 inference : ', plus4_inference)
print('len(ims): ' ,len(ims))
return new_ims, new_eigens, len_eigens
else:
print('mode : ', mode, 'name : ', cat_name, ' and, no save - return : images ')
return new_ims
else:
for i in range(len(new_ims[0])) : # i : i번째 사람
# person 1
save_sub_dir=os.path.join(save_dir, cat_name, cat_name+'_{}'.format(i+1))
if not os.path.exists(save_sub_dir):
os.mkdir(save_sub_dir)
print('saving...', save_sub_dir)
for idx, im in enumerate(new_ims):
imageio.imwrite(os.path.join(save_sub_dir, ims_names[idx]) , im[i])
return
def cal_objectnum(ims, mode='people4'):
if mode=='people3':
remove_channel=[1,2]
set_eigen=set()
for im in ims:
combi=(im[:, :, remove_channel[0]]-1/2*im[:, :, remove_channel[1]])
# 조합
eigen_values=np.unique(combi)
set_eigen=set_eigen.union(eigen_values)
eigen_values=list(set_eigen)
#print(eigen_values)
eigen_values.remove(0) # 0은 제외한다.
return remove_channel, eigen_values
elif mode=='people4':
set_eigen=set()
for im in ims:
combi=-im[:, :, 0]+1/3*im[:, :, 1]-1/6*im[:,:,2]
# 조합
eigen_values=np.round(np.unique(combi), 3)
set_eigen=set_eigen.union(eigen_values)
eigen_values=list(set_eigen)
eigen_values.remove(0)
return eigen_values
def prep_1person(im):
return im
def prep_2person(im):
channel=[0,1,2]
remove_channel=[]
for chan in channel:
if len(np.unique(im[:, :, chan]))==2: # mask가 존재하는 채널(0과 128)
remove_channel.append(chan)
#print(remove_channel) : # 1,2
im_people=[]
person1=im.copy()
person1[:, :, remove_channel[0]]=0
person2=im.copy()
person2[:, :, remove_channel[1]]=0
im_people.append(person1)
im_people.append(person2)
if len(im_people[0].shape)<3:
raise NameError('Image should be 3d')
return im_people
def prep_3person(im, remove_channel, eigen_values):
#print(remove_channel) # 1,2
combi=(im[:, :, remove_channel[0]]-1/2*im[:, :, remove_channel[1]])
# 조합
# eigen_values=np.unique(combi)
# eigen_values=np.delete(eigen_values, np.where(eigen_values == 0)) # 0은 제외한다.
# 고유값이 3개가 아닌 경우
if len(eigen_values)!=3:
print(eigen_values)
raise NameError('not 3person')
im_people=[]
for i in range(len(eigen_values)):
people=combi.copy()
people[people!=eigen_values[i]]=0
people[people==eigen_values[i]]=128
# 1d to 3d
people=np.concatenate([np.zeros(test.shape)[..., np.newaxis],
np.zeros(test.shape)[..., np.newaxis], people[..., np.newaxis]], axis=2).astype('uint8')
im_people.append(people)
if len(im_people[0].shape)<3:
raise NameError('Image should be 3d')
return im_people
def prep_4plus_people(im, eigen_values, plus4_save_eigen=False, inference=False, save_dir=False):
combi=np.round(-im[:, :, 0]+1/3*im[:, :, 1]-1/6*im[:,:,2], 3)
# print(np.unique(combi))
# print(eigen_values)
# 조합
# eigen_values=np.unique(combi)
# eigen_values=np.delete(eigen_values, np.where(eigen_values == 0)) # 0은 제외한다.
im_people=[]
eigen_people=[]
for i in range(len(eigen_values)):
people=combi.copy()
people[people!=eigen_values[i]]=0
people[people==eigen_values[i]]=128
# 1d to 3d
people=np.concatenate([np.zeros(people.shape)[..., np.newaxis],
np.zeros(people.shape)[..., np.newaxis], people[..., np.newaxis]], axis=2).astype('uint8')
#print(people.shape)
# if len(np.unique(people))==1:
# raise NameError('people mask\'s length is 1')
if inference:
if save_dir:
raise NameError('can\'t use inference and save_dir simultaneously')
eigen_people.append(eigen_values[i])
im_people.append(people)
else:
if i in plus4_save_eigen:
im_people.append(people)
if len(im_people[0].shape)<3:
raise NameError('Image should be 3d')
if inference:
return im_people, eigen_people, len(eigen_values)
else:
return im_people