forked from collin80/DueMotorCtrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vhz.cpp
268 lines (232 loc) · 8.02 KB
/
vhz.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <Arduino.h>
#include "vhz.h"
#include "config.h"
#include "pwm.h"
#include "sinetable.h"
#include "adc.h"
#include "encoder.h"
#include "dig_in.h"
#include <due_can.h>
volatile int32_t posAccum;
volatile int32_t posInc;
volatile int currentRotorPosition, targetRotorPosition;
volatile int lastEncoderPos;
volatile uint32_t vhzCounter;
volatile int a, b, c;
volatile int currentSector, lastSector;
volatile bool needSectorCorrection;
volatile int pwmPower = 0;
//temp consts for testing
const int pwmMinPower = 30; //Lowest ratio of power to allow. in tenths of a percent
const int pwmMaxPower = 1000; //highest ratio of power to allow. also 1/10 of a %
const int fullRPM = 1000; //RPM at which we go up to full power.
OFFSET_TEST offsetVhz;
void setupVHz()
{
posInc = 0;
posAccum = 0;
currentRotorPosition = 0;
targetRotorPosition = 0;
vhzCounter = 0;
a=0;
b = 0;
c = 0;
needSectorCorrection = true;
updatePWM(0,0,0);
if (settings.hallAB != 255 && settings.hallBC != 255 & settings.hallCA != 255)
{
int sector = getMotorSector();
if (sector == 0)
{
//SerialUSB.println("Not using hall effect sensors for initial position");
return;
}
//SerialUSB.print("Hall effect sensors indicate we're starting in sector ");
//SerialUSB.println(sector);
controllerStatus.theta = ((sector - 1) * 85) + 42;
targetRotorPosition = controllerStatus.theta;
currentSector = lastSector = sector;
}
}
//this target RPM is in mechanical / motor RPM not electrical RPM
//Smoothly scales post and pre multipliers to keep within proper range. Output variable posInc
//is scaled up 65536 in the end.u
void setVHzSpeed(int targetRPM)
{
/*int elecRPM = (targetRPM * settings.numPoles);
int preMultiplier = 16;
int postMultiplier = 0;
int testVal = elecRPM;
*/
controllerStatus.rpm = targetRPM;
if (targetRPM < 4)
{
digitalWrite(42, LOW); //disable drive
updatePWM(0,0,0);
posInc = 0;
return;
}
digitalWrite(42, HIGH); //enable drive
/*while (testVal > 1024)
{
testVal = testVal >> 1;
preMultiplier--;
postMultiplier++;
}*/
posInc = (((16777216ul * settings.numPoles) / PWM_FREQ) * targetRPM) / 60;
//posInc = ((((elecRPM * 512) / 60) << preMultiplier) / 10000) << postMultiplier;
if (targetRPM > fullRPM) pwmPower = pwmMaxPower;
else
{
pwmPower = pwmMaxPower - ((pwmMaxPower * (fullRPM - targetRPM)) / fullRPM);
if (pwmPower < pwmMinPower) pwmPower = pwmMinPower;
}
}
void updatePosVHz()
{
volatile int localRotorPos;
//if (posInc == 0) return;
vhzCounter++;
controllerStatus.phaseCurrentRawB = getCurrent2();
controllerStatus.phaseCurrentRawC = getCurrent1();
controllerStatus.phaseCurrentRawA = -controllerStatus.phaseCurrentRawB - controllerStatus.phaseCurrentRawC;
controllerStatus.phaseCurrentFilteredA = ((controllerStatus.phaseCurrentRawA * 30) + (controllerStatus.phaseCurrentFilteredA * 70)) / 100;
controllerStatus.phaseCurrentFilteredB = ((controllerStatus.phaseCurrentRawB * 30) + (controllerStatus.phaseCurrentFilteredB * 70)) / 100;
controllerStatus.phaseCurrentFilteredC = ((controllerStatus.phaseCurrentRawC * 30) + (controllerStatus.phaseCurrentFilteredC * 70)) / 100;
/*
if (controllerStatus.runningOffsetTest)
{
if (vhzCounter - offsetVhz.testStart > 1000) // 0.1 seconds
{
offsetVhz.testStart = vhzCounter;
if (offsetVhz.posAccum > offsetVhz.bestAccum)
{
offsetVhz.bestAccum = offsetVhz.posAccum;
offsetVhz.bestOffset = offsetVhz.currentOffset;
}
if (offsetVhz.currentOffset < 511)
{
offsetVhz.currentOffset++;
settings.thetaOffset = offsetVhz.currentOffset;
offsetVhz.posAccum = 0;
}
else
{
SerialUSB.println("Offset test is done.");
SerialUSB.print("Best offset was: ");
SerialUSB.println(offsetVhz.bestOffset);
controllerStatus.runningOffsetTest = false;
settings.thetaOffset = offsetVhz.bestOffset;
controllerStatus.IdRef = 0;
controllerStatus.IqRef = 0;
}
}
}
*/
//the index pulse happens at the proper zero point.
localRotorPos = -getEncoderCount(); //encoder is backward on test device
localRotorPos = (((localRotorPos * 512l * (int32_t)settings.numPoles) / ((int)settings.encoderCount * 4L)));
//localRotorPos = (((localRotorPos * 512l * 12l) / (170000)));
posAccum += posInc;
targetRotorPosition = localRotorPos + (posAccum >> 15);
posAccum &= 0x7FFF;
targetRotorPosition &= 0x1FF; //result of all above calcs must be constrained to 0-511
//currently not using thetaOffset
//localRotorPos = (targetRotorPosition + settings.thetaOffset) & 511;
controllerStatus.theta = targetRotorPosition;
a = ( (_sin_times32768[targetRotorPosition] + 32768) * pwmPower) / 65536;
c = ( (_sin_times32768[(targetRotorPosition + 170) & 511]+32768) * pwmPower) / 65536;
b = ( (_sin_times32768[(targetRotorPosition + 341) & 511]+32768) * pwmPower) / 65536;
//SVM style PWM output - This is optional. Can be commented out for traditional PWM
if (a <= b)
{
if (a <= c) //A is smallest of all
{
b -= a;
c -= a;
a = 0;
}
else //C is smallest then
{
a -= c;
b -= c;
c = 0;
}
}
else
{
if (b <= c) //B is smallest
{
a -= b;
c -= b;
b = 0;
}
else //C is the smallest
{
a -= c;
b -= c;
c = 0;
}
}
updatePWM(a,b,c);
if (vhzCounter > 14)
{
vhzCounter = 0;
sendVHzCANMsgs();
}
}
void startVHZOffsetTest()
{
controllerStatus.runningOffsetTest = true;
offsetVhz.bestOffset = 0;
offsetVhz.currentOffset = 0;
offsetVhz.posAccum = 0;
offsetVhz.bestAccum = 0;
offsetVhz.testStart = vhzCounter;
settings.thetaOffset = 0;
}
void sendVHzCANMsgs()
{
CAN_FRAME outFrame;
int16_t temp;
int32_t temp2;
//debugging message. Sends rotor angle and phase currents
outFrame.id = settings.canBaseTx;
outFrame.length = 8;
outFrame.extended = false;
outFrame.data.byte[0] = highByte(controllerStatus.theta);
outFrame.data.byte[1] = lowByte(controllerStatus.theta);
temp = controllerStatus.phaseCurrentRawA >> 16;
outFrame.data.byte[2] = highByte(temp);
outFrame.data.byte[3] = lowByte(temp);
temp = controllerStatus.phaseCurrentRawB >> 16;
outFrame.data.byte[4] = highByte(temp);
outFrame.data.byte[5] = lowByte(temp);
temp = controllerStatus.phaseCurrentRawC >> 16;
outFrame.data.byte[6] = highByte(temp);
outFrame.data.byte[7] = lowByte(temp);
Can0.sendFrame(outFrame);
outFrame.id = settings.canBaseTx + 1;
temp = (getBusVoltage() >> 17);
outFrame.data.byte[0] = lowByte(temp);
outFrame.data.byte[1] = lowByte(getMotorSector());
outFrame.data.byte[2] = highByte(a);
outFrame.data.byte[3] = lowByte(a);
outFrame.data.byte[4] = highByte(b);
outFrame.data.byte[5] = lowByte(b);
outFrame.data.byte[6] = highByte(c);
outFrame.data.byte[7] = lowByte(c);
Can0.sendFrame(outFrame);
outFrame.id = settings.canBaseTx + 2;
temp2 = getEncoderCount();
outFrame.length = 8;
outFrame.data.byte[0] = temp2 & 0xFF;
outFrame.data.byte[1] = (temp2 >> 8) & 0xFF;
outFrame.data.byte[2] = (temp2 >> 16) & 0xFF;
outFrame.data.byte[3] = (temp2 >> 24) & 0xFF;
outFrame.data.byte[4] = getDigitalInput(0);
outFrame.data.byte[5] = getDigitalInput(1);
outFrame.data.byte[6] = getDigitalInput(2);
outFrame.data.byte[7] = getDigitalInput(3);
Can0.sendFrame(outFrame);
}