Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

前端进阶算法3:从浏览器缓存淘汰策略和Vue的keep-alive学习LRU算法 #9

Open
sisterAn opened this issue Apr 7, 2020 · 6 comments

Comments

@sisterAn
Copy link
Owner

sisterAn commented Apr 7, 2020

引言

这个标题已经很明显的告诉我们:前端需要了解 LRU 算法!

这也是前端技能的亮点,当面试官在问到你前端开发中遇到过哪些算法,你也可以把这部分丢过去!

本节按以下步骤切入:

  • 由浏览器缓存策略引出 LRU 算法原理
  • 然后走进 vuekeep-alive 的应用
  • 接着,透过 vuekeep-alive 源码看 LRU 算法的实现
  • 最后,来一道 leetcode 题目,我们来实现一个 LRU 算法

按这个步骤来,完全掌握 LRU 算法,点亮前端技能,下面就开始吧👇

一、LRU 缓存淘汰策略

缓存在计算机网络上随处可见,例如:当我们首次访问一个网页时,打开很慢,但当我们再次打开这个网页时,打开就很快。

这就涉及缓存在浏览器上的应用:浏览器缓存。当我们打开一个网页时,例如 https://github.com/sisterAn/JavaScript-Algorithms ,它会在发起真正的网络请求前,查询浏览器缓存,看是否有要请求的文件,如果有,浏览器将会拦截请求,返回缓存文件,并直接结束请求,不会再去服务器上下载。如果不存在,才会去服务器请求。

其实,浏览器中的缓存是一种在本地保存资源副本,它的大小是有限的,当我们请求数过多时,缓存空间会被用满,此时,继续进行网络请求就需要确定缓存中哪些数据被保留,哪些数据被移除,这就是浏览器缓存淘汰策略,最常见的淘汰策略有 FIFO(先进先出)、LFU(最少使用)、LRU(最近最少使用)。

LRU ( Least Recently Used :最近最少使用 )缓存淘汰策略,故名思义,就是根据数据的历史访问记录来进行淘汰数据,其核心思想是 如果数据最近被访问过,那么将来被访问的几率也更高 ,优先淘汰最近没有被访问到的数据。

画个图帮助我们理解:

二、LRU 在 keep-alive (Vue) 上的实现

1. keep-alive

keep-alive 在 vue 中用于实现组件的缓存,当组件切换时不会对当前组件进行卸载。

<!-- 基本 -->
<keep-alive>
  <component :is="view"></component>
</keep-alive>

最常用的两个属性:includeexculde ,用于组件进行有条件的缓存,可以用逗号分隔字符串、正则表达式或一个数组来表示。

在 2.5.0 版本中,keep-alive 新增了 max 属性,用于最多可以缓存多少组件实例,一旦这个数字达到了,在新实例被创建之前,已缓存组件中最久没有被访问的实例会被销毁掉,看,这里就应用了 LRU 算法。即在 keep-alive 中缓存达到 max,新增缓存实例会优先淘汰最近没有被访问到的实例🎉🎉🎉

下面我们透过 vue 源码看一下具体的实现👇

2. 从 vue 源码看 keep-alive 的实现

export default {
  name: "keep-alive",
  // 抽象组件属性 ,它在组件实例建立父子关系的时候会被忽略,发生在 initLifecycle 的过程中
  abstract: true, 
  props: {
    // 被缓存组件
    include: patternTypes, 
    // 不被缓存组件
    exclude: patternTypes,
    // 指定缓存大小
    max: [String, Number] 
  },
  created() {
    // 初始化用于存储缓存的 cache 对象
    this.cache = Object.create(null);
    // 初始化用于存储VNode key值的 keys 数组
    this.keys = []; 
  },
  destroyed() {
    for (const key in this.cache) {
      // 删除所有缓存
      pruneCacheEntry(this.cache, key, this.keys);
    }
  },
  mounted() {
    // 监听缓存(include)/不缓存(exclude)组件的变化
    // 在变化时,重新调整 cache
    // pruneCache:遍历 cache,如果缓存的节点名称与传入的规则没有匹配上的话,就把这个节点从缓存中移除
    this.$watch("include", val => {
      pruneCache(this, name => matches(val, name));
    });
    this.$watch("exclude", val => {
      pruneCache(this, name => !matches(val, name));
    });
  },
  render() {
    // 获取第一个子元素的 vnode
    const slot = this.$slots.default;
    const vnode: VNode = getFirstComponentChild(slot);
    const componentOptions: ?VNodeComponentOptions =
      vnode && vnode.componentOptions;
    if (componentOptions) {
      // name 不在 inlcude 中或者在 exlude 中则直接返回 vnode,否则继续进行下一步
      // check pattern
      const name: ?string = getComponentName(componentOptions);
      const { include, exclude } = this;
      if (
        // not included
        (include && (!name || !matches(include, name))) ||
        // excluded
        (exclude && name && matches(exclude, name))
      ) {
        return vnode;
      }
      
      const { cache, keys } = this;
      // 获取键,优先获取组件的 name 字段,否则是组件的 tag
      const key: ?string =
        vnode.key == null
          ? // same constructor may get registered as different local components
            // so cid alone is not enough (#3269)
            componentOptions.Ctor.cid +
            (componentOptions.tag ? `::${componentOptions.tag}` : "")
          : vnode.key;
        
      // --------------------------------------------------
      // 下面就是 LRU 算法了,
      // 如果在缓存里有则调整,
      // 没有则放入(长度超过 max,则淘汰最近没有访问的)
      // --------------------------------------------------
      // 如果命中缓存,则从缓存中获取 vnode 的组件实例,并且调整 key 的顺序放入 keys 数组的末尾
      if (cache[key]) {
        vnode.componentInstance = cache[key].componentInstance;
        // make current key freshest
        remove(keys, key);
        keys.push(key);
      }
      // 如果没有命中缓存,就把 vnode 放进缓存
      else {
        cache[key] = vnode;
        keys.push(key);
        // prune oldest entry
        // 如果配置了 max 并且缓存的长度超过了 this.max,还要从缓存中删除第一个
        if (this.max && keys.length > parseInt(this.max)) {
          pruneCacheEntry(cache, keys[0], keys, this._vnode);
        }
      }
      
      // keepAlive标记位
      vnode.data.keepAlive = true;
    }
    return vnode || (slot && slot[0]);
  }
};

// 移除 key 缓存
function pruneCacheEntry (
  cache: VNodeCache,
  key: string,
  keys: Array<string>,
  current?: VNode
) {
  const cached = cache[key]
  if (cached && (!current || cached.tag !== current.tag)) {
    cached.componentInstance.$destroy()
  }
  cache[key] = null
  remove(keys, key)
}

// remove 方法(shared/util.js)
/**
 * Remove an item from an array.
 */
export function remove (arr: Array<any>, item: any): Array<any> | void {
  if (arr.length) {
    const index = arr.indexOf(item)
    if (index > -1) {
      return arr.splice(index, 1)
    }
  }
}

keep-alive源码路径

keep-alive 缓存超过 max 时,使用的缓存淘汰算法就是 LRU 算法,它在实现的过程中用到了 cache 对象用于保存缓存的组件实例及 key 值,keys 数组用于保存缓存组件的 key ,当 keep-alive 中渲染一个需要缓存的实例时:

  • 判断缓存中是否已缓存了该实例,缓存了则直接获取,并调整 keykeys 中的位置(移除 keyskey ,并放入 keys 数组的最后一位)
  • 如果没有缓存,则缓存该实例,若 keys 的长度大于 max (缓存长度超过上限),则移除 keys[0] 缓存

下面我们来自己实现一个 LRU 算法吧⛽️⛽️⛽️

三、leetcode:LRU 缓存机制

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和写入数据 put

获取数据 get(key) - 如果密钥 ( key ) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1
写入数据 put(key, value) - 如果密钥不存在,则写入数据。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据,从而为新数据留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

前面已经介绍过了 keep-alive 中LRU实现源码,现在来看这道题是不是很简单😊😊😊,可以尝试自己解答一下⛽️,然后思考一下有没有什么继续优化的!欢迎提供更多的解法

答案已提交到 #7

四、认识更多的前端道友,一起进阶前端开发

前端算法集训营第一期免费开营啦🎉🎉🎉,免费哟!

在这里,你可以和志同道合的前端朋友们(600+)一起进阶前端算法,从0到1构建完整的数据结构与算法体系。

在这里,瓶子君不仅介绍算法,还将算法与前端各个领域进行结合,包括浏览器、HTTP、V8、React、Vue源码等。

在这里,你可以每天学习一道大厂算法题(阿里、腾讯、百度、字节等等)或 leetcode,瓶子君都会在第二天解答哟!

更多福利等你解锁🔓🔓🔓!

在公众号「前端瓶子君」内回复「算法」即可加入。你的关注就是对瓶子君最大的支持😄😄😄

@bodyno
Copy link

bodyno commented Apr 7, 2020

👍

1 similar comment
@yygmind
Copy link
Collaborator

yygmind commented Apr 7, 2020

👍

@FrontToEnd
Copy link

( ̄︶ ̄)↗ 

@omitchen
Copy link

omitchen commented Nov 9, 2020

清晰明了,写的很棒

@ohdo
Copy link

ohdo commented Mar 29, 2021

nice

@vczc
Copy link

vczc commented Jun 7, 2024

good

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

7 participants