-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes.c
102 lines (82 loc) · 2.03 KB
/
bayes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include<stdio.h>
#include<stdlib.h>
typedef struct CorpusInstance {
size_t n_attributes;
int *attributes;
int category;
} CorpusInstance;
void
corpus_instance_initialize(CorpusInstance *ci, size_t n_attributes)
{
ci->attributes = (int*) calloc(n_attributes, sizeof(int));
ci->n_attributes = n_attributes;
}
typedef struct Feature {
int *values;
size_t n_values;
} Feature;
typedef struct TrainedSet {
size_t n_features;
Feature *features;
size_t n_categories;
int *categories;
} TrainedSet;
void
trained_set_initialize(TrainedSet *ts, size_t n_features, size_t n_categories)
{
ts->features = (Feature*) malloc(n_features * sizeof(Feature));
ts->n_features = n_features;
for(size_t i = 0; i < n_features; i++)
{
ts->features[i].values = (int*) calloc(n_features, sizeof(int));
}
ts->categories = (int*) calloc(n_categories, sizeof(int));
ts->n_categories = n_categories;
}
void
trained_set_train(TrainedSet *ts, CorpusInstance *ci)
{
for(size_t i = 0; i < ci->n_attributes; i++)
{
ts->features[i].values[ci->attributes[i]]++;
}
ts->categories[ci->category]++;
}
// P(C)
double
trained_set_category_prob(TrainedSet *ts, int category)
{
double category_sum = 0;
for(size_t i = 0; i < ts->n_categories; i++)
{
category_sum += ts->categories[i];
}
return ts->categories[category] / category_sum;
}
// P(V|S)
double
trained_set_attribute_prob(TrainedSet *ts, size_t feature, size_t value, size_t category)
{
return ts->features[feature].values[value] / ts->categories[category];
}
int main()
{
CorpusInstance ci;
corpus_instance_initialize(&ci, 3);
ci.attributes[0] = 1;
ci.attributes[1] = 2;
ci.attributes[2] = 0;
ci.category = 0;
CorpusInstance ci2;
corpus_instance_initialize(&ci2, 3);
ci2.attributes[0] = 2;
ci2.attributes[1] = 2;
ci2.attributes[2] = 1;
ci2.category = 1;
TrainedSet ts;
trained_set_initialize(&ts, 3, 2);
trained_set_train(&ts, &ci);
trained_set_train(&ts, &ci2);
printf("Prob(S): %.2f\n", trained_set_category_prob(&ts, 1));
return 0;
}