forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdense_norms_test.go
271 lines (235 loc) · 6.56 KB
/
dense_norms_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
package tensor
import (
"fmt"
"math"
"testing"
"github.com/pkg/errors"
"github.com/stretchr/testify/assert"
)
func testNormVal(T *Dense, ord NormOrder, want float64) error {
retVal, err := T.Norm(ord)
if err != nil {
err = errors.Wrap(err, "testNormVal")
return err
}
if !retVal.IsScalar() {
return errors.New("Expected Scalar")
}
got := retVal.ScalarValue().(float64)
if !closef64(want, got) && !(math.IsNaN(want) && alikef64(want, got)) {
return errors.New(fmt.Sprintf("Norm %v, Backing %v: Want %f, got %f instead", ord, T.Data(), want, got))
}
return nil
}
func TestTensor_Norm(t *testing.T) {
var T *Dense
var err error
var backing, backing1, backing2 []float64
var corrects map[NormOrder]float64
var wrongs []NormOrder
// empty
backing = make([]float64, 0)
T = New(WithBacking(backing))
//TODO
// vecktor
backing = []float64{1, 2, 3, 4}
backing1 = []float64{-1, -2, -3, -4}
backing2 = []float64{-1, 2, -3, 4}
corrects = map[NormOrder]float64{
UnorderedNorm(): math.Pow(30, 0.5), // Unordered
FrobeniusNorm(): math.NaN(), // Frobenius
NuclearNorm(): math.NaN(), // Nuclear
InfNorm(): 4, // Inf
NegInfNorm(): 1, // -Inf
Norm(0): 4, // 0
Norm(1): 10, // 1
Norm(-1): 12.0 / 25.0, // -1
Norm(2): math.Pow(30, 0.5), // 2
Norm(-2): math.Pow((205.0 / 144.0), -0.5), // -2
}
backings := [][]float64{backing, backing1, backing2}
for ord, want := range corrects {
for _, b := range backings {
T = New(WithShape(len(backing)), WithBacking(b))
if err = testNormVal(T, ord, want); err != nil {
t.Error(errors.Cause(err))
}
}
}
// 2x2 mat
backing = []float64{1, 3, 5, 7}
corrects = map[NormOrder]float64{
UnorderedNorm(): math.Pow(84, 0.5), // Unordered
FrobeniusNorm(): math.Pow(84, 0.5), // Frobenius
NuclearNorm(): 10, // Nuclear
InfNorm(): 12, // Inf
NegInfNorm(): 4, // -Inf
Norm(1): 10, // 1
Norm(-1): 6, // -1
Norm(2): 9.1231056256176615, // 2
Norm(-2): 0.87689437438234041, // -2
}
T = New(WithShape(2, 2), WithBacking(backing))
for ord, want := range corrects {
if err = testNormVal(T, ord, want); err != nil {
t.Errorf("ORD %v: %v", ord, err)
}
}
// impossible values
wrongs = []NormOrder{
Norm(-3),
Norm(0),
}
for _, ord := range wrongs {
if err = testNormVal(T, ord, math.NaN()); err == nil {
t.Errorf("Expected an error when finding norm of order %v", ord)
}
}
// 3x3 mat
// this test is added because the 2x2 example happens to have equal nuclear norm and induced 1-norm.
// the 1/10 scaling factor accommodates the absolute tolerance used.
backing = []float64{0.1, 0.2, 0.3, 0.6, 0, 0.5, 0.3, 0.2, 0.1}
corrects = map[NormOrder]float64{
FrobeniusNorm(): (1.0 / 10.0) * math.Pow(89, 0.5),
NuclearNorm(): 1.3366836911774836,
InfNorm(): 1.1,
NegInfNorm(): 0.6,
Norm(1): 1,
Norm(-1): 0.4,
Norm(2): 0.88722940323461277,
Norm(-2): 0.19456584790481812,
}
T = New(WithShape(3, 3), WithBacking(backing))
for ord, want := range corrects {
if err = testNormVal(T, ord, want); err != nil {
t.Error(err)
}
}
}
func TestTensor_Norm_Axis(t *testing.T) {
assert := assert.New(t)
var T, s, expected, retVal *Dense
var sliced Tensor
var err error
var backing []float64
var ords []NormOrder
t.Log("Vector Norm Tests: compare the use of axis with computing of each row or column separately")
ords = []NormOrder{
UnorderedNorm(),
InfNorm(),
NegInfNorm(),
Norm(-1),
Norm(0),
Norm(1),
Norm(2),
Norm(3),
}
backing = []float64{1, 2, 3, 4, 5, 6}
T = New(WithShape(2, 3), WithBacking(backing))
for _, ord := range ords {
var expecteds []*Dense
for k := 0; k < T.Shape()[1]; k++ {
sliced, _ = T.Slice(nil, ss(k))
s = sliced.(View).Materialize().(*Dense)
expected, _ = s.Norm(ord)
expecteds = append(expecteds, expected)
}
if retVal, err = T.Norm(ord, 0); err != nil {
t.Error(err)
continue
}
assert.Equal(len(expecteds), retVal.Shape()[0])
for i, e := range expecteds {
sliced, _ = retVal.Slice(ss(i))
sliced = sliced.(View).Materialize()
if !allClose(e.Data(), sliced.Data()) {
t.Errorf("Axis = 0; Ord = %v; Expected %v. Got %v instead. ret %v, i: %d", ord, e.Data(), sliced.Data(), retVal, i)
}
}
// reset and do axis = 1
expecteds = expecteds[:0]
for k := 0; k < T.Shape()[0]; k++ {
sliced, _ = T.Slice(ss(k))
s = sliced.(*Dense)
expected, _ = s.Norm(ord)
expecteds = append(expecteds, expected)
}
if retVal, err = T.Norm(ord, 1); err != nil {
t.Error(err)
continue
}
assert.Equal(len(expecteds), retVal.Shape()[0])
for i, e := range expecteds {
sliced, _ = retVal.Slice(ss(i))
sliced = sliced.(View).Materialize().(*Dense)
if !allClose(e.Data(), sliced.Data()) {
t.Errorf("Axis = 1; Ord = %v; Expected %v. Got %v instead", ord, e.Data(), sliced.Data())
}
}
}
t.Log("Matrix Norms")
ords = []NormOrder{
UnorderedNorm(),
FrobeniusNorm(),
InfNorm(),
NegInfNorm(),
Norm(-2),
Norm(-1),
Norm(1),
Norm(2),
}
axeses := [][]int{
{0, 0},
{0, 1},
{0, 2},
{1, 0},
{1, 1},
{1, 2},
{2, 0},
{2, 1},
{2, 2},
}
backing = Range(Float64, 1, 25).([]float64)
T = New(WithShape(2, 3, 4), WithBacking(backing))
dims := T.Dims()
for _, ord := range ords {
for _, axes := range axeses {
rowAxis := axes[0]
colAxis := axes[1]
if rowAxis < 0 {
rowAxis += dims
}
if colAxis < 0 {
colAxis += dims
}
if rowAxis == colAxis {
} else {
kthIndex := dims - (rowAxis + colAxis)
var expecteds []*Dense
for k := 0; k < T.Shape()[kthIndex]; k++ {
var slices []Slice
for s := 0; s < kthIndex; s++ {
slices = append(slices, nil)
}
slices = append(slices, ss(k))
sliced, _ = T.Slice(slices...)
if rowAxis > colAxis {
sliced.T()
}
sliced = sliced.(View).Materialize().(*Dense)
s = sliced.(*Dense)
expected, _ = s.Norm(ord)
expecteds = append(expecteds, expected)
}
if retVal, err = T.Norm(ord, rowAxis, colAxis); err != nil {
t.Error(err)
continue
}
for i, e := range expecteds {
sliced, _ = retVal.Slice(ss(i))
assert.Equal(e.Data(), sliced.Data(), "ord %v, rowAxis: %v, colAxis %v", ord, rowAxis, colAxis)
}
}
}
}
}