Skip to content

Latest commit

 

History

History
1275 lines (1230 loc) · 26.9 KB

ES-analysis-positionincrement.md

File metadata and controls

1275 lines (1230 loc) · 26.9 KB

Elasticsearch分词中的PositionIncrement何解?

题目中的描述不是十分准确,更多应该是Lucene的分词。Lucene用了很久,其版本更新也很快。在ES出来之后,直接使用Lucene的时候就比较少了,更多的就在ES框架下一站式完成,ES目前在项目中几乎占据了半壁江山。

ES的功能很强大,使用过程中,有一个问题是绕不过的:就是中文分词。这是至关重要的一个问题,直接影响搜索结果的准确和召回。

一般来讲,分词的问题本身目前解决的已经相当不错了,大家用的比较多的是jieba分词,还有清华、斯坦福、复旦等开源的中文分词。如果要在ES中使用jieba分词,就需要定制一个ES的分词插件,将jieba分词load到ES中。

几年之前,因为项目需要,我撸过一个简单的ES插件,在github上开源: jieba分词ES插件,也有一些用户在使用,期间也在断断续续的更新。

其中的关键,通过阅读代码就会发现,在处理token的过程中,有以下属性需要处理:

  • CharTermAttribute
  • OffsetAttribute
  • TypeAttribute
  • PositionIncrementAttribute

分别代表了分词的结果的最小单元:term,分词的offset:startOffsetendOffset,以及词性,例如word、或者数字、字母等等。

最后一个属性PositionIncrementAttribute比较难以理解,在特定的场合下才需要特殊的处理,大部分情况下默认的结果就可以,但在特定的场合下,会丢掉部分的文档。下文我们就详细解释这个属性,通过例子来说明这个是如何产生影响的,以及该如何解决。

我们先解释一下分词的结果,使用到的ES,以及插件版本如下:

  • elasticsearch-6.4.0
  • elasticsearch-jieba-plugin-6.4.0

安装好插件,启动ES:

./bin/elasticsearch

有如下输出,则说明插件加载成功:

...
[2018-10-26T23:04:12,572][INFO ][o.e.p.PluginsService     ] [z7z-6dR] loaded plugin [analysis-jieba]
...

准备好示例文档:

现在 高级产品经理\n20034-200311 产品副经理\n向产品群经理汇报工作\  负责产品为得普利麻\n20025-20033 产品副经理\n向产品群经理汇报工作\n负责推广产品为精分思瑞康),麻醉得普利麻

jieba包括两种分词模式:

  • index模式,适用于索引的分词,可以分词更多的term,照顾召回。
  • search模式,适用于查询的分词,分词结果没有交叉,更多考虑的是准确率的方面。

我们验证一下分词插件,以及两种模式的影响,通过如下命令,我们先看看search模式的分词效果:

curl -X GET "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' { "tokenizer" : "jieba_search", "text" : "现在 高级产品经理\n2003。4-2003。11 产品副经理\n向产品群经理汇报工作\  负责产品为:得普利麻\n2002。5-2003。3 产品副经理\n向产品群经理汇报工作\n负责推广产品为:精分(思瑞康),麻醉(得普利麻)" }‘

查看输出:

{
  "tokens": [
    {
      "token": "现在",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": " ",
      "start_offset": 2,
      "end_offset": 3,
      "type": "word",
      "position": 1
    },
    {
      "token": "高级",
      "start_offset": 3,
      "end_offset": 5,
      "type": "word",
      "position": 2
    },
    {
      "token": "产品",
      "start_offset": 5,
      "end_offset": 7,
      "type": "word",
      "position": 3
    },
    {
      "token": "经理",
      "start_offset": 7,
      "end_offset": 9,
      "type": "word",
      "position": 4
    },
    {
      "token": "\n",
      "start_offset": 9,
      "end_offset": 10,
      "type": "word",
      "position": 5
    },
    {
      "token": "2003",
      "start_offset": 10,
      "end_offset": 14,
      "type": "word",
      "position": 6
    },
    {
      "token": "",
      "start_offset": 14,
      "end_offset": 15,
      "type": "word",
      "position": 7
    },
    {
      "token": "4",
      "start_offset": 15,
      "end_offset": 16,
      "type": "word",
      "position": 8
    },
    {
      "token": "-",
      "start_offset": 16,
      "end_offset": 17,
      "type": "word",
      "position": 9
    },
    {
      "token": "2003",
      "start_offset": 17,
      "end_offset": 21,
      "type": "word",
      "position": 10
    },
    {
      "token": "",
      "start_offset": 21,
      "end_offset": 22,
      "type": "word",
      "position": 11
    },
    {
      "token": "11",
      "start_offset": 22,
      "end_offset": 24,
      "type": "word",
      "position": 12
    },
    {
      "token": " ",
      "start_offset": 24,
      "end_offset": 25,
      "type": "word",
      "position": 13
    },
    {
      "token": "产品",
      "start_offset": 25,
      "end_offset": 27,
      "type": "word",
      "position": 14
    },
    {
      "token": "副经理",
      "start_offset": 27,
      "end_offset": 30,
      "type": "word",
      "position": 15
    },
    {
      "token": "\n",
      "start_offset": 30,
      "end_offset": 31,
      "type": "word",
      "position": 16
    },
    {
      "token": "",
      "start_offset": 31,
      "end_offset": 32,
      "type": "word",
      "position": 17
    },
    {
      "token": "产品",
      "start_offset": 32,
      "end_offset": 34,
      "type": "word",
      "position": 18
    },
    {
      "token": "",
      "start_offset": 34,
      "end_offset": 35,
      "type": "word",
      "position": 19
    },
    {
      "token": "经理",
      "start_offset": 35,
      "end_offset": 37,
      "type": "word",
      "position": 20
    },
    {
      "token": "汇报工作",
      "start_offset": 37,
      "end_offset": 41,
      "type": "word",
      "position": 21
    },
    {
      "token": "\n",
      "start_offset": 41,
      "end_offset": 42,
      "type": "word",
      "position": 22
    },
    {
      "token": "负责",
      "start_offset": 42,
      "end_offset": 44,
      "type": "word",
      "position": 23
    },
    {
      "token": "产品",
      "start_offset": 44,
      "end_offset": 46,
      "type": "word",
      "position": 24
    },
    {
      "token": "",
      "start_offset": 46,
      "end_offset": 47,
      "type": "word",
      "position": 25
    },
    {
      "token": "",
      "start_offset": 47,
      "end_offset": 48,
      "type": "word",
      "position": 26
    },
    {
      "token": "",
      "start_offset": 48,
      "end_offset": 49,
      "type": "word",
      "position": 27
    },
    {
      "token": "普利",
      "start_offset": 49,
      "end_offset": 51,
      "type": "word",
      "position": 28
    },
    {
      "token": "",
      "start_offset": 51,
      "end_offset": 52,
      "type": "word",
      "position": 29
    },
    {
      "token": "\n",
      "start_offset": 52,
      "end_offset": 53,
      "type": "word",
      "position": 30
    },
    {
      "token": "2002",
      "start_offset": 53,
      "end_offset": 57,
      "type": "word",
      "position": 31
    },
    {
      "token": "",
      "start_offset": 57,
      "end_offset": 58,
      "type": "word",
      "position": 32
    },
    {
      "token": "5",
      "start_offset": 58,
      "end_offset": 59,
      "type": "word",
      "position": 33
    },
    {
      "token": "-",
      "start_offset": 59,
      "end_offset": 60,
      "type": "word",
      "position": 34
    },
    {
      "token": "2003",
      "start_offset": 60,
      "end_offset": 64,
      "type": "word",
      "position": 35
    },
    {
      "token": "",
      "start_offset": 64,
      "end_offset": 65,
      "type": "word",
      "position": 36
    },
    {
      "token": "3",
      "start_offset": 65,
      "end_offset": 66,
      "type": "word",
      "position": 37
    },
    {
      "token": " ",
      "start_offset": 66,
      "end_offset": 67,
      "type": "word",
      "position": 38
    },
    {
      "token": "产品",
      "start_offset": 67,
      "end_offset": 69,
      "type": "word",
      "position": 39
    },
    {
      "token": "副经理",
      "start_offset": 69,
      "end_offset": 72,
      "type": "word",
      "position": 40
    },
    {
      "token": "\n",
      "start_offset": 72,
      "end_offset": 73,
      "type": "word",
      "position": 41
    },
    {
      "token": "",
      "start_offset": 73,
      "end_offset": 74,
      "type": "word",
      "position": 42
    },
    {
      "token": "产品",
      "start_offset": 74,
      "end_offset": 76,
      "type": "word",
      "position": 43
    },
    {
      "token": "",
      "start_offset": 76,
      "end_offset": 77,
      "type": "word",
      "position": 44
    },
    {
      "token": "经理",
      "start_offset": 77,
      "end_offset": 79,
      "type": "word",
      "position": 45
    },
    {
      "token": "汇报工作",
      "start_offset": 79,
      "end_offset": 83,
      "type": "word",
      "position": 46
    },
    {
      "token": "\n",
      "start_offset": 83,
      "end_offset": 84,
      "type": "word",
      "position": 47
    },
    {
      "token": "负责",
      "start_offset": 84,
      "end_offset": 86,
      "type": "word",
      "position": 48
    },
    {
      "token": "推广",
      "start_offset": 86,
      "end_offset": 88,
      "type": "word",
      "position": 49
    },
    {
      "token": "产品",
      "start_offset": 88,
      "end_offset": 90,
      "type": "word",
      "position": 50
    },
    {
      "token": "",
      "start_offset": 90,
      "end_offset": 91,
      "type": "word",
      "position": 51
    },
    {
      "token": "",
      "start_offset": 91,
      "end_offset": 92,
      "type": "word",
      "position": 52
    },
    {
      "token": "精分",
      "start_offset": 92,
      "end_offset": 94,
      "type": "word",
      "position": 53
    },
    {
      "token": "",
      "start_offset": 94,
      "end_offset": 95,
      "type": "word",
      "position": 54
    },
    {
      "token": "",
      "start_offset": 95,
      "end_offset": 96,
      "type": "word",
      "position": 55
    },
    {
      "token": "瑞康",
      "start_offset": 96,
      "end_offset": 98,
      "type": "word",
      "position": 56
    },
    {
      "token": "",
      "start_offset": 98,
      "end_offset": 99,
      "type": "word",
      "position": 57
    },
    {
      "token": "",
      "start_offset": 99,
      "end_offset": 100,
      "type": "word",
      "position": 58
    },
    {
      "token": "麻醉",
      "start_offset": 100,
      "end_offset": 102,
      "type": "word",
      "position": 59
    },
    {
      "token": "",
      "start_offset": 102,
      "end_offset": 103,
      "type": "word",
      "position": 60
    },
    {
      "token": "",
      "start_offset": 103,
      "end_offset": 104,
      "type": "word",
      "position": 61
    },
    {
      "token": "普利",
      "start_offset": 104,
      "end_offset": 106,
      "type": "word",
      "position": 62
    },
    {
      "token": "",
      "start_offset": 106,
      "end_offset": 107,
      "type": "word",
      "position": 63
    },
    {
      "token": "",
      "start_offset": 107,
      "end_offset": 108,
      "type": "word",
      "position": 64
    }
  ]
}

分词结果中,token对应的就是term属性,start_offset和end_offset对应的就是Offset属性,type类似于词性。这几个都是比较好理解的,那么position是什么含义呢?通过观察:

position是分词之后term/token的先对位置,代表了顺序和距离。

这个例子中产品副经理是紧挨着的,中间没有间隔。也就意味着如下的查询

{
	"query": {
		"match_phrase":{
			"field1": {
				"query": "产品经理",
				"slop": 0 
			}
		}
	}
}

能够搜到我们的示例文档。这里要注意,slop默认是0,可以不写。当slop要求为0的时候,就要求搜索词组产品经理在文档中连起来的,这个时候命中的是产品经理,而不是产品|群|经理|表示token分割。如果设置slop为1,则产品|群|经理也会命中。slop的大小,就是position的大小差异。

看下index模式,要更加复杂,PositionIncrement的作用也是在这里体现。同样是上面的文本:

curl -X GET "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' { "tokenizer" : "jieba_index", "text" : "现在 高级产品经理\n2003。4-2003。11 产品副经理\n向产品群经理汇报工作\  负责产品为:得普利麻\n2002。5-2003。3 产品副经理\n向产品群经理汇报工作\n负责推广产品为:精分(思瑞康),麻醉(得普利麻)" }‘

结果如下,需要仔细对比和search的差异。

{
  "tokens": [
    {
      "token": "现在",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": " ",
      "start_offset": 2,
      "end_offset": 3,
      "type": "word",
      "position": 1
    },
    {
      "token": "高级",
      "start_offset": 3,
      "end_offset": 5,
      "type": "word",
      "position": 2
    },
    {
      "token": "产品",
      "start_offset": 5,
      "end_offset": 7,
      "type": "word",
      "position": 3
    },
    {
      "token": "经理",
      "start_offset": 7,
      "end_offset": 9,
      "type": "word",
      "position": 4
    },
    {
      "token": "\n",
      "start_offset": 9,
      "end_offset": 10,
      "type": "word",
      "position": 5
    },
    {
      "token": "2003",
      "start_offset": 10,
      "end_offset": 14,
      "type": "word",
      "position": 6
    },
    {
      "token": "",
      "start_offset": 14,
      "end_offset": 15,
      "type": "word",
      "position": 7
    },
    {
      "token": "4",
      "start_offset": 15,
      "end_offset": 16,
      "type": "word",
      "position": 8
    },
    {
      "token": "-",
      "start_offset": 16,
      "end_offset": 17,
      "type": "word",
      "position": 9
    },
    {
      "token": "2003",
      "start_offset": 17,
      "end_offset": 21,
      "type": "word",
      "position": 10
    },
    {
      "token": "",
      "start_offset": 21,
      "end_offset": 22,
      "type": "word",
      "position": 11
    },
    {
      "token": "11",
      "start_offset": 22,
      "end_offset": 24,
      "type": "word",
      "position": 12
    },
    {
      "token": " ",
      "start_offset": 24,
      "end_offset": 25,
      "type": "word",
      "position": 13
    },
    {
      "token": "产品",
      "start_offset": 25,
      "end_offset": 27,
      "type": "word",
      "position": 14
    },
    {
      "token": "副经理",
      "start_offset": 27,
      "end_offset": 30,
      "type": "word",
      "position": 15
    },
    {
      "token": "经理",
      "start_offset": 28,
      "end_offset": 30,
      "type": "word",
      "position": 16
    },
    {
      "token": "\n",
      "start_offset": 30,
      "end_offset": 31,
      "type": "word",
      "position": 17
    },
    {
      "token": "",
      "start_offset": 31,
      "end_offset": 32,
      "type": "word",
      "position": 18
    },
    {
      "token": "产品",
      "start_offset": 32,
      "end_offset": 34,
      "type": "word",
      "position": 19
    },
    {
      "token": "",
      "start_offset": 34,
      "end_offset": 35,
      "type": "word",
      "position": 20
    },
    {
      "token": "经理",
      "start_offset": 35,
      "end_offset": 37,
      "type": "word",
      "position": 21
    },
    {
      "token": "汇报",
      "start_offset": 37,
      "end_offset": 39,
      "type": "word",
      "position": 22
    },
    {
      "token": "汇报工作",
      "start_offset": 37,
      "end_offset": 41,
      "type": "word",
      "position": 22
    },
    {
      "token": "工作",
      "start_offset": 39,
      "end_offset": 41,
      "type": "word",
      "position": 23
    },
    {
      "token": "\n",
      "start_offset": 41,
      "end_offset": 42,
      "type": "word",
      "position": 24
    },
    {
      "token": "负责",
      "start_offset": 42,
      "end_offset": 44,
      "type": "word",
      "position": 25
    },
    {
      "token": "产品",
      "start_offset": 44,
      "end_offset": 46,
      "type": "word",
      "position": 26
    },
    {
      "token": "",
      "start_offset": 46,
      "end_offset": 47,
      "type": "word",
      "position": 27
    },
    {
      "token": "",
      "start_offset": 47,
      "end_offset": 48,
      "type": "word",
      "position": 28
    },
    {
      "token": "",
      "start_offset": 48,
      "end_offset": 49,
      "type": "word",
      "position": 29
    },
    {
      "token": "普利",
      "start_offset": 49,
      "end_offset": 51,
      "type": "word",
      "position": 30
    },
    {
      "token": "",
      "start_offset": 51,
      "end_offset": 52,
      "type": "word",
      "position": 31
    },
    {
      "token": "\n",
      "start_offset": 52,
      "end_offset": 53,
      "type": "word",
      "position": 32
    },
    {
      "token": "2002",
      "start_offset": 53,
      "end_offset": 57,
      "type": "word",
      "position": 33
    },
    {
      "token": "",
      "start_offset": 57,
      "end_offset": 58,
      "type": "word",
      "position": 34
    },
    {
      "token": "5",
      "start_offset": 58,
      "end_offset": 59,
      "type": "word",
      "position": 35
    },
    {
      "token": "-",
      "start_offset": 59,
      "end_offset": 60,
      "type": "word",
      "position": 36
    },
    {
      "token": "2003",
      "start_offset": 60,
      "end_offset": 64,
      "type": "word",
      "position": 37
    },
    {
      "token": "",
      "start_offset": 64,
      "end_offset": 65,
      "type": "word",
      "position": 38
    },
    {
      "token": "3",
      "start_offset": 65,
      "end_offset": 66,
      "type": "word",
      "position": 39
    },
    {
      "token": " ",
      "start_offset": 66,
      "end_offset": 67,
      "type": "word",
      "position": 40
    },
    {
      "token": "产品",
      "start_offset": 67,
      "end_offset": 69,
      "type": "word",
      "position": 41
    },
    {
      "token": "副经理",
      "start_offset": 69,
      "end_offset": 72,
      "type": "word",
      "position": 42
    },
    {
      "token": "经理",
      "start_offset": 70,
      "end_offset": 72,
      "type": "word",
      "position": 43
    },
    {
      "token": "\n",
      "start_offset": 72,
      "end_offset": 73,
      "type": "word",
      "position": 44
    },
    {
      "token": "",
      "start_offset": 73,
      "end_offset": 74,
      "type": "word",
      "position": 45
    },
    {
      "token": "产品",
      "start_offset": 74,
      "end_offset": 76,
      "type": "word",
      "position": 46
    },
    {
      "token": "",
      "start_offset": 76,
      "end_offset": 77,
      "type": "word",
      "position": 47
    },
    {
      "token": "经理",
      "start_offset": 77,
      "end_offset": 79,
      "type": "word",
      "position": 48
    },
    {
      "token": "汇报",
      "start_offset": 79,
      "end_offset": 81,
      "type": "word",
      "position": 49
    },
    {
      "token": "汇报工作",
      "start_offset": 79,
      "end_offset": 83,
      "type": "word",
      "position": 49
    },
    {
      "token": "工作",
      "start_offset": 81,
      "end_offset": 83,
      "type": "word",
      "position": 50
    },
    {
      "token": "\n",
      "start_offset": 83,
      "end_offset": 84,
      "type": "word",
      "position": 51
    },
    {
      "token": "负责",
      "start_offset": 84,
      "end_offset": 86,
      "type": "word",
      "position": 52
    },
    {
      "token": "推广",
      "start_offset": 86,
      "end_offset": 88,
      "type": "word",
      "position": 53
    },
    {
      "token": "产品",
      "start_offset": 88,
      "end_offset": 90,
      "type": "word",
      "position": 54
    },
    {
      "token": "",
      "start_offset": 90,
      "end_offset": 91,
      "type": "word",
      "position": 55
    },
    {
      "token": "",
      "start_offset": 91,
      "end_offset": 92,
      "type": "word",
      "position": 56
    },
    {
      "token": "精分",
      "start_offset": 92,
      "end_offset": 94,
      "type": "word",
      "position": 57
    },
    {
      "token": "",
      "start_offset": 94,
      "end_offset": 95,
      "type": "word",
      "position": 58
    },
    {
      "token": "",
      "start_offset": 95,
      "end_offset": 96,
      "type": "word",
      "position": 59
    },
    {
      "token": "瑞康",
      "start_offset": 96,
      "end_offset": 98,
      "type": "word",
      "position": 60
    },
    {
      "token": "",
      "start_offset": 98,
      "end_offset": 99,
      "type": "word",
      "position": 61
    },
    {
      "token": "",
      "start_offset": 99,
      "end_offset": 100,
      "type": "word",
      "position": 62
    },
    {
      "token": "麻醉",
      "start_offset": 100,
      "end_offset": 102,
      "type": "word",
      "position": 63
    },
    {
      "token": "",
      "start_offset": 102,
      "end_offset": 103,
      "type": "word",
      "position": 64
    },
    {
      "token": "",
      "start_offset": 103,
      "end_offset": 104,
      "type": "word",
      "position": 65
    },
    {
      "token": "普利",
      "start_offset": 104,
      "end_offset": 106,
      "type": "word",
      "position": 66
    },
    {
      "token": "",
      "start_offset": 106,
      "end_offset": 107,
      "type": "word",
      "position": 67
    },
    {
      "token": "",
      "start_offset": 107,
      "end_offset": 108,
      "type": "word",
      "position": 68
    }
  ]
}

因为index模式的原因,产品副经理分为了产品|副经理|经理。这个时候,合理的position就十分重要了。通过我最新的插件的实现,这里的position分别是14,15,16。这是正确的,因为要正确处理下面的结果。

当我们执行如下搜索:

{
	"query": {
		"match_phrase":{
			"field1": {
				"query": "产品经理"
			}
		}
	},
	"highlight" : {
        "fields" : {
            "field1" : {}
        }
    }
}

命中我们的示例文本,无间隔的产品经理可以命中,并且可以高亮,但是产品副经理没有命中,也没有高亮。

再看这个例子:

{
	"query": {
		"match_phrase":{
			"field1": {
				"query": "产品经理",
				"slop": 2
			}
		}
	},
	"highlight" : {
        "fields" : {
            "field1" : {}
        }
    }
}

则,无间隔的产品经理可以命中,并且可以高亮;同时,产品副经理有命中,产品经理分别高亮。这两个例子的差别,大家要细细体会。

那么如何正确的处理position呢,关键就在于PositionIncrementAttribute属性的处理,通常我们使用search模式类似的分词是不会遇到问题的,即使使用默认的PositionIncrementAttribute的实现:根据分词得到的token,每次+1,从而得到position

但默认的实现,遇到如下的情况,就会出现问题:

示例文本:

中国人民解放军胜利了

如果采用默认的实现,则输出:

{
  "tokens": [
    {
      "token": "中国",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": "中国人",
      "start_offset": 0,
      "end_offset": 3,
      "type": "word",
      "position": 1
    },
    {
      "token": "中国人民解放军",
      "start_offset": 0,
      "end_offset": 7,
      "type": "word",
      "position": 2
    },
    {
      "token": "国人",
      "start_offset": 1,
      "end_offset": 3,
      "type": "word",
      "position": 4
    },
    {
      "token": "人民",
      "start_offset": 2,
      "end_offset": 4,
      "type": "word",
      "position": 5
    },
    {
      "token": "解放",
      "start_offset": 4,
      "end_offset": 6,
      "type": "word",
      "position": 6
    },
    {
      "token": "解放军",
      "start_offset": 4,
      "end_offset": 7,
      "type": "word",
      "position": 7
    },
    {
      "token": "胜利",
      "start_offset": 7,
      "end_offset": 9,
      "type": "word",
      "position": 8
    },
    {
      "token": "",
      "start_offset": 9,
      "end_offset": 10,
      "type": "word",
      "position": 9
    }
  ]
}

根据这样的position,我们如下的查询,就找不到这个示例文档,从而产生丢数据的现象。

{
	"query": {
		"match_phrase":{
			"field1": {
				"query": "中国人民"
			}
		}
	},
	"highlight" : {
        "fields" : {
            "field1" : {}
        }
    }
}

本来中国人民在示例中是无间隔紧邻的,但是由于position解析的问题,直接导致slop已经变成了4,所以必须制定查询中的slop比较大,才能够返回正确的文档,但这里Rank也会受到影响。

看一下正确position的结果。

{
  "tokens": [
    {
      "token": "中国",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": "中国人",
      "start_offset": 0,
      "end_offset": 3,
      "type": "word",
      "position": 0
    },
    {
      "token": "中国人民解放军",
      "start_offset": 0,
      "end_offset": 7,
      "type": "word",
      "position": 0
    },
    {
      "token": "国人",
      "start_offset": 1,
      "end_offset": 3,
      "type": "word",
      "position": 0
    },
    {
      "token": "人民",
      "start_offset": 2,
      "end_offset": 4,
      "type": "word",
      "position": 1
    },
    {
      "token": "解放",
      "start_offset": 4,
      "end_offset": 6,
      "type": "word",
      "position": 2
    },
    {
      "token": "解放军",
      "start_offset": 4,
      "end_offset": 7,
      "type": "word",
      "position": 2
    },
    {
      "token": "胜利",
      "start_offset": 7,
      "end_offset": 9,
      "type": "word",
      "position": 3
    },
    {
      "token": "",
      "start_offset": 9,
      "end_offset": 10,
      "type": "word",
      "position": 4
    }
  ]
}

其中,中国是0,人民是1,就可以命中了。

基本上,在处理token的时候,要判断``是1,还是0。这里的Lucene实现机制不好,对于分词的实现约束比较多,并且只考虑了英文。现在的实现,优先考虑了召回。极个别情况,还是会有些准确率的问题。

另外一个层面,要从词的切分的角度处理,分词的结果应该提供一个最细粒度的、无交叉的切分,这个方式用来做索引,会比较好一些。那这样,默认的PositionIncrement也是能够满足需求的。接下来看看,jieba是否可以改造一下,支持第三种分词的模式:最细粒度的、无交叉的切分。