-
Notifications
You must be signed in to change notification settings - Fork 0
/
cool.cpp
173 lines (149 loc) · 4.42 KB
/
cool.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include <bits/stdc++.h>
using namespace std;
string ltrim(const string &);
string rtrim(const string &);
/*
* Complete the 'knightlOnAChessboard' function below.
*
* The function is expected to return a 2D_INTEGER_ARRAY.
* The function accepts INTEGER n as parameter.
*/
int k_dist(int ki, int kj, int n){
vector<vector<vector<vector<int>>>> d;
// fill with infs
for(int i = 0; i < n; i++){
d.push_back(vector<vector<vector<int>>>());
for(int j = 0; j < n; j++){
d[i].push_back(vector<vector<int>>());
for(int k = 0; k < n; k++){
d[i][j].push_back(vector<int>(n));
for(int l = 0; l < n; l++){
d[i][j][k][l] = 0x7fffffff;
}
}
}
}
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
cout << "checking ";
cout << i;
cout << " ";
cout << j;
cout << "\n";
// set all 8 valid knight moves to 1
// up ki, left kj
if(i > ki && j > kj){
d[i][j][i - ki][j - kj] = 1;
}
// up kj, left ki
if(i > kj && j > ki){
d[i][j][i - kj][j - ki] = 1;
}
// up ki, right kj
if(i > ki && j < n - kj){
d[i][j][i - ki][j + kj] = 1;
}
// up kj, right ki
if(i > kj && j < n - ki){
d[i][j][i - kj][j + ki] = 1;
}
// down ki, left kj
if(i < n - ki && j > kj){
d[i][j][i + ki][j - kj] = 1;
}
// down kj, left ki
if(i < n - kj && j > ki){
d[i][j][i + kj][j - ki] = 1;
}
// down ki, right kj
if(i < n - ki && j < n - kj){
d[i][j][i + ki][j + kj] = 1;
}
// down kj, right ki
if(i < n - kj && j < n - ki){
d[i][j][i + kj][j + ki] = 1;
}
}
}
// all pairs shortest path from CS212
for(int h = 0; h < n*n; h++){
// don't even use h
// for every tile...
for(int i = 1; i < n; i++){
for(int j = 1; j < n; j++){
// for every tile it can reach...
for(int k = 0; k < n; k++){
for(int l = 0; l < n; l++){
if(d[i][j][k][l] == 0x7fffffff) continue;
// for every tile THOSE can reach...
for(int ii = 0; ii < n; ii++){
for(int jj = 0; jj < n; jj++){
if(d[k][l][ii][jj] == 0x7fffffff) continue;
d[i][j][k][l] = min(
d[i][j][ii][ii],
d[i][j][k][l] + d[k][l][ii][jj]
);
}
}
}
}
}
}
}
// here's the easy part
return d[0][0][n-1][n-1];
}
// O(n^10) - now that's efficient!
vector<vector<int>> knightlOnAChessboard(int n) {
vector<vector<int>> res;
for(int i = 1; i < n; i++){
res.push_back(vector<int>(n));
for(int j = 1; j < n; j++){
if(i > j){
res[i - 1][j - 1] = res[j - 1][i - 1];
}
else{
res[i - 1][j - 1] = k_dist(i, j, n);
}
}
}
return res;
}
int main()
{
ofstream fout(getenv("OUTPUT_PATH"));
string n_temp;
getline(cin, n_temp);
int n = stoi(ltrim(rtrim(n_temp)));
vector<vector<int>> result = knightlOnAChessboard(n);
for (size_t i = 0; i < result.size(); i++) {
for (size_t j = 0; j < result[i].size(); j++) {
fout << result[i][j];
if (j != result[i].size() - 1) {
fout << " ";
}
}
if (i != result.size() - 1) {
fout << "\n";
}
}
fout << "\n";
fout.close();
return 0;
}
string ltrim(const string &str) {
string s(str);
s.erase(
s.begin(),
find_if(s.begin(), s.end(), not1(ptr_fun<int, int>(isspace)))
);
return s;
}
string rtrim(const string &str) {
string s(str);
s.erase(
find_if(s.rbegin(), s.rend(), not1(ptr_fun<int, int>(isspace))).base(),
s.end()
);
return s;
}