forked from vision-agh/apse_uav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharuco_detect_original.py
958 lines (777 loc) · 47.6 KB
/
aruco_detect_original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
import cv2
from cv2 import aruco
import numpy as np
import json
import csv
import os
from scipy.spatial.transform import Rotation as R
# %%====================================
# PARAMETERS TO BE CHANGED BY USER
# index of first frame to be processed
start_frame = 1300
# index of last frame to be processed, if None: all frames from input folder/input video folder will be processed
# you can also terminate the processing immediately by press 'q' key
stop_frame = 1339
# change the value if you want to skip some frames on the sequence
step_frame = 1
# True if you want to show image with results, False otherwise
showImage = True
# value for cv2.waitKey() function - 0: wait for key to be pressed, otherwise: time in miliseconds to show image
cv2waitKeyVal = 1
# True if you want to save the results to a file, False otherwise
saveResults = False
# True if you want to save images after detection on the disk, False otherwise
saveImages = False
# True if you use data from DCNN, False if you only use Aruco method
useCentroidData = False
# number of frames to be used for marker size averaging, recommended is 1
N_avg = 1
# True if you want to draw markers on image, False otherwise
drawMarkers = True
# True if you want to draw axes of the markers on image, False otherwise
drawMarkersAxes = False
# True if you want to print pose and ID of the markers on image, False otherwise
showDataOnImage = True
# True if you want to print distances between vehicles on image, False otherwise
showDistancesOnImage = True
# True if you want to draw LEDs of the host car, False otherwise
drawLeds = False
# threshold value for LEDs detection - None: use default value (190 + altitude in metres), 0-255: your value
LEDs_threshold = None
# True if you want Lidar to be the source of measurements, False if you want host's Aruco marker
sourceLidar = False
# True if you want to draw lines from Lidar/host's Aruco to vehicles, False otherwise
# colour info: distance to Aruco marker - red, distance to closest point - yellow
drawLines = True
# True if you want to draw points on the image, False otherwise
# colour info: Aruco centroid and Lidar - cyan, DCNN centroid - magenta, DCNN closest point - white
drawPoints = False
# path to camera parameters file
path_camera_params = "data/" + "cam_params.json"
# True if you use images as input, False if you use video
useImages = True
# path to folder with input images
# images inside must be named image_XXXX.png, where XXXX is the frame number
if useImages:
path_input_images = "dynamic_images"
# True if you use video as input, False if you you images
useVideo = False
# path to an input video (path + filename + extension)
if useVideo:
path_input_video = "/Users/keithsiilats/Downloads/controltest.mp4"
# path to data from DCNN detection, used only if useCentroidData is True (path + filename.csv)
if useCentroidData:
path_dcnn_data = "your_path"
# path to save results to a file, used only if saveResults is True (path + filename.csv)
# be careful not to overwrite any existing file!
if saveResults:
path_output_results = "your_path"
# path to save images to a folder, used only if saveImages is True
# path must lead to an existing folder!
if saveImages:
path_output_images = "your_path"
# %%====================================
# FUNCTIONS FOR DATA INPUT/OUTPUT
def readCameraParams():
# read camera parameters from file
with open(path_camera_params, "r") as file:
cam_params = json.load(file)
# camera matrix
mtx = np.array(cam_params["mtx"])
# distortion coefficients
dist = np.array(cam_params["dist"])
return mtx, dist
def readCentroidData(path_dcnn_data):
# open data file with centroids and bboxes from DCNN detection and store it in centroid_data variable
centroid_data = []
with open(path_dcnn_data) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
if line_count > 1:
temp = []
for i in range(17):
if row[i] == '' or row[i] == 'nan':
row[i] = 0
temp.append(int(row[i]))
centroid_data.append(temp)
line_count += 1
csv_file.close()
return centroid_data
def outputDataInit():
# clear output file
file = open(path_output_results, "w")
# write names of the columns for data
if useCentroidData:
file.write("frame_ID ,ID_4_detected ,markerLength ,leds_ID ,UAV_altitude ,fov_width ,fov_height ," +
"ID_1_detected ,distance_veh1_aruco ,distance_veh1_aruco_bbox ,distance_veh1_dcnn ,distance_veh1_dcnn_bbox ," +
"ID_2_detected ,distance_veh2_aruco ,distance_veh2_aruco_bbox ,distance_veh2_dcnn ,distance_veh2_dcnn_bbox ," +
"ID_3_detected ,distance_veh3_aruco ,distance_veh3_aruco_bbox ,distance_veh3_dcnn ,distance_veh3_dcnn_bbox" + "\n")
else:
file.write("frame_ID ,ID_4_detected ,markerLength ,leds_ID ,UAV_altitude ,fov_width ,fov_height ," +
"ID_1_detected ,distance_veh1_aruco ,distance_veh1_aruco_bbox ," +
"ID_2_detected ,distance_veh2_aruco ,distance_veh2_aruco_bbox ," +
"ID_3_detected ,distance_veh3_aruco ,distance_veh3_aruco_bbox ," + "\n")
file.close()
file = open(path_output_results, "a")
return file
def outputData(file):
# temp values to write if particular markers were not detected (then distances = 0)
fill_with_zeros3 = "," + str(0) + "," + str(0) + "," + str(0)
fill_with_zeros5 = "," + str(0) + "," + str(0) + "," + str(0) + "," + str(0) + "," + str(0)
# write frame number and if vehicle 4 was detected
file.write(str(k) + "," + str(detected_ID[3]))
# for detected vehicle 4 write marker length in metres, LEDs ID, altitude of the UAV in metres (estimated from vision method), estimated FOV of the camera in metres
if (detected_ID[3] == 1):
file.write("," + str(round(markerLength, 5)) + "," + str(leds) + "," + str(round(altitude, 2)) + "," + str(
round(width * markerLength / msp4, 2)) + "," + str(round(height * markerLength / msp4, 2)))
else:
file.write(fill_with_zeros5)
# for other vehicles write if they were detected, distance to Aruco marker and bounding box and - if used - same points from DCNN detection
if (detected_ID[0] == 1): # vehicle 1
if useCentroidData:
file.write("," + str(detected_ID[0]) + "," + str(round(dist_veh1_aruco, 3)) + "," + str(
round(dist_veh1_aruco_bbox, 3)) + "," + str(round(dist_veh1_dcnn, 3)) + "," + str(
round(dist_veh1_dcnn_bbox, 3)))
else:
file.write("," + str(detected_ID[0]) + "," + str(round(dist_veh1_aruco, 3)) + "," + str(
round(dist_veh1_aruco_bbox, 3)))
else:
file.write(fill_with_zeros5 if useCentroidData else fill_with_zeros3)
if (detected_ID[1] == 1): # vehicle 2
if useCentroidData:
file.write("," + str(detected_ID[1]) + "," + str(round(dist_veh2_aruco, 3)) + "," + str(
round(dist_veh2_aruco_bbox, 3)) + "," + str(round(dist_veh2_dcnn, 3)) + "," + str(
round(dist_veh2_dcnn_bbox, 3)))
else:
file.write("," + str(detected_ID[1]) + "," + str(round(dist_veh2_aruco, 3)) + "," + str(
round(dist_veh2_aruco_bbox, 3)))
else:
file.write(fill_with_zeros5 if useCentroidData else fill_with_zeros3)
if (detected_ID[2] == 1): # vehicle 3
if useCentroidData:
file.write("," + str(detected_ID[2]) + "," + str(round(dist_veh3_aruco, 3)) + "," + str(
round(dist_veh3_aruco_bbox, 3)) + "," + str(round(dist_veh3_dcnn, 3)) + "," + str(
round(dist_veh3_dcnn_bbox, 3)))
else:
file.write("," + str(detected_ID[2]) + "," + str(round(dist_veh3_aruco, 3)) + "," + str(
round(dist_veh3_aruco_bbox, 3)))
else:
file.write(fill_with_zeros5 if useCentroidData else fill_with_zeros3)
file.write("\n")
# %%====================================
# FUNCTIONS FOR SETTING PARAMETERS
def setArucoParameters():
parameters = aruco.DetectorParameters()
# set values for Aruco detection parameters
parameters.minMarkerPerimeterRate = 0.01 # enables detection from higher altitude
parameters.perspectiveRemovePixelPerCell = 8
parameters.perspectiveRemoveIgnoredMarginPerCell = 0.33
parameters.errorCorrectionRate = 2.0 # much more detections from high altitude, but FP happen sometimes
parameters.aprilTagMinClusterPixels = 100 # less candidates to encode ID
parameters.aprilTagMaxNmaxima = 5
parameters.aprilTagCriticalRad = 20 * np.pi / 180 # much less candidates to encode ID
parameters.aprilTagMaxLineFitMse = 1
parameters.aprilTagMinWhiteBlackDiff = 100 # faster detection, but in bad contrast problems may happen
# parameters.aprilTagQuadDecimate = 1.5 #huge detection time speedup, but at the cost of fewer detections and worse accuracy
# default set of all Aruco detection parameters
# parameters.adaptiveThreshWinSizeMin = 3
# parameters.adaptiveThreshWinSizeMax = 23
# parameters.adaptiveThreshWinSizeStep = 10
# parameters.adaptiveThreshConstant = 7
# parameters.minMarkerPerimeterRate = 0.03
# parameters.maxMarkerPerimeterRate = 4
# parameters.polygonalApproxAccuracyRate = 0.03
# parameters.minCornerDistanceRate = 0.05
# parameters.minDistanceToBorder = 3
# parameters.minMarkerDistanceRate = 0.05
# parameters.cornerRefinementMethod = aruco.CORNER_REFINE_NONE
# parameters.cornerRefinementWinSize = 5
# parameters.cornerRefinementMaxIterations = 30
# parameters.cornerRefinementMinAccuracy = 0.1
# parameters.markerBorderBits = 1
# parameters.perspectiveRemovePixelPerCell = 4
# parameters.perspectiveRemoveIgnoredMarginPerCell = 0.13
# parameters.maxErroneousBitsInBorderRate = 0.35
# parameters.minOtsuStdDev = 5.0
# parameters.errorCorrectionRate = 0.6
# parameters.aprilTagMinClusterPixels = 5
# parameters.aprilTagMaxNmaxima = 10
# parameters.aprilTagCriticalRad = 10*np.pi/180
# parameters.aprilTagMaxLineFitMse = 10
# parameters.aprilTagMinWhiteBlackDiff = 5
# parameters.aprilTagDeglitch = 0
# parameters.aprilTagQuadDecimate = 0
# parameters.aprilTagQuadSigma = 0
# parameters.detectInvertedMarker = False
return parameters
def setAverageMarkerSize():
# temp variables for averaging marker size
msp1_avg = np.zeros((N_avg, 1))
msp2_avg = np.zeros((N_avg, 1))
msp3_avg = np.zeros((N_avg, 1))
msp4_avg = np.zeros((N_avg, 1))
return msp1_avg, msp2_avg, msp3_avg, msp4_avg
# %%====================================
# FUNCTIONS FOR ARUCO MARKERS
def preprocessFrame(frame):
# remove distortion from camera
frame = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR)
# perform gamma correction
lab = cv2.cvtColor(frame, cv2.COLOR_RGB2LAB)
lab[..., 0] = cv2.LUT(lab[..., 0], lookUpTable)
frame = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
return frame
def detectArucoMarkers(gray, parameters):
# use predefined Aruco markers dictionary
aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_4X4_50)
# detect markers with APRILTAG method
parameters.cornerRefinementMethod = aruco.CORNER_REFINE_APRILTAG
detector = aruco.ArucoDetector(aruco_dict)
detector.setDetectorParameters(parameters)
corners, ids, rejected_img_points = detector.detectMarkers(gray)
return corners, ids
def getMarkerData(corners, rvec, cx_prev, cy_prev):
# marker centre x and y
cx = int(corners[0][0] + corners[1][0] + corners[2][0] + corners[3][0]) / 4
cy = int(corners[0][1] + corners[1][1] + corners[2][1] + corners[3][1]) / 4
# marker size in pixels, cosine of yaw angle, sine of yaw angle
msp = ((np.sqrt(np.power((corners[1][0] - corners[0][0]), 2) + np.power((corners[1][1] - corners[0][1]), 2)) +
np.sqrt(np.power((corners[2][0] - corners[1][0]), 2) + np.power((corners[2][1] - corners[1][1]), 2)) +
np.sqrt(np.power((corners[3][0] - corners[2][0]), 2) + np.power((corners[3][1] - corners[2][1]), 2)) +
np.sqrt(np.power((corners[0][0] - corners[3][0]), 2) + np.power((corners[0][1] - corners[3][1]), 2))) / 4)
# distance in metres between marker of the same ID on subsequent frames
if cx_prev is not None and cy_prev is not None:
diff = np.sqrt(np.power(cx_prev - cx, 2) + np.power(cy_prev - cy, 2)) * markerLength / msp
else:
diff = 0
r = R.from_rotvec(rvec)
ang = r.as_euler('zxy', degrees=True)[0]
return abs(cx), abs(cy), msp, diff, ang
def calculateAverageMarkerSize(msp_avg, msp):
# write last measured marker size into table
if (N_avg == 1):
msp_avg = msp
elif (N_avg > 1 and isinstance(N_avg, int)):
for j in range(N_avg - 1):
msp_avg[j] = msp_avg[j + 1]
msp_avg[N_avg - 1] = msp
# calculate the average and rescale marker size
nonzero = np.count_nonzero(msp_avg)
size_corr = np.sum(msp_avg) / (msp * nonzero)
msp = msp * size_corr
return size_corr, msp
def markerLengthCorrection(altitude):
# use correction of marker size based on current altitude
return markerLengthOrg * (1 - 0.00057 * altitude / marker_div) / div
def printDataOnImage(corners, tvec, rvec, ids):
font = cv2.FONT_HERSHEY_SIMPLEX
r = R.from_rotvec(rvec)
# calculate real altitude to be printed
tvec_temp = tvec.copy()
tvec_temp[2] = tvec_temp[2] / marker_div
# calculate angles and position and convert them to text
ang = 'R = ' + str([round(r.as_euler('zxy', degrees=True)[0], 2),
round(r.as_euler('zxy', degrees=True)[1], 2),
round(r.as_euler('zxy', degrees=True)[2], 2)]) + 'deg'
pos = 't = ' + str([round(j, 3) for j in tvec_temp]) + 'm'
id = 'ID = ' + str(ids)
# calculate the position where the text will be placed on image
position = tuple([int(corners[0] - 150), int(corners[1] + 150)])
position_ang = tuple([int(position[0] - 0), int(position[1] + 50)])
position_id = tuple([int(position[0] - 0), int(position[1] - 50)])
# write the text onto the image
cv2.putText(frame, id, position_id, font, 1.4, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(frame, pos, position, font, 1.4, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(frame, ang, position_ang, font, 1.4, (255, 255, 255), 2, cv2.LINE_AA)
# %%====================================
# FUNCTIONS FOR POINTS CALCULATIONS
def detectAndDrawLEDs(gray, tvec, rvec, size_corr, msp, threshold=None):
# position of the LEDs wrt. Aruco marker
axis_leds = np.float32([[-0.419, -0.42, 0], [-0.414, -0.305, 0], [-0.409, -0.19, 0], [-0.404, -0.07, 0],
[-0.399, 0.065, 0], [-0.393, 0.19, 0], [-0.388, 0.315, 0], [-0.382, 0.435, 0]])
# project these points onto the image
imgpts_leds, _ = cv2.projectPoints(axis_leds, rvec, tvec / size_corr, mtx, dist)
imgpts_leds = np.maximum(0, np.int32(imgpts_leds).reshape(-1, 2))
# use 190 + altitude in metres as the default value if the user did not specify the threshold
thr = max(190 + int(tvec[2] / marker_div), 240) if threshold is None else threshold
value = ''
leds = 0
for j in range(8):
x = int(imgpts_leds[j][0])
y = int(imgpts_leds[j][1])
# use 5x5 neighbourhood of pixels
point = gray[y - 2:y + 3, x - 2:x + 3]
val = np.sum(np.sum(point)) / 25
# if the LED is on
if val > thr:
value = value + '1'
leds = leds + np.power(2, 7 - j)
if drawLeds:
cv2.circle(frame, (x, y), int(msp / 15) + 1, color=(0, 255, 0), thickness=int(msp / 30) + 1)
# if the LED is off
else:
value = value + '0'
if drawLeds:
cv2.circle(frame, (x, y), int(msp / 15) + 1, color=(0, 0, 255), thickness=int(msp / 30) + 1)
return leds
def centroidFromAruco(veh_coords, tvec, rvec, size_corr):
# project measured centroid of the vehicle wrt. Aruco marker onto image
imgpts, _ = cv2.projectPoints(veh_coords, rvec, tvec / size_corr, mtx, dist)
imgpts = np.maximum(0, np.int32(imgpts).reshape(-1, 2))
if drawPoints:
cv2.circle(frame, (int(imgpts[0][0]), int(imgpts[0][1])), 5, color=(255, 255, 0), thickness=-1)
return imgpts
def centroidFromDCNN(centroid_data_x, centroid_data_y):
# use the centroid of the vehicle from DCNN detection
xc = centroid_data_x
yc = centroid_data_y
# set and draw the point on the image
imgpts = np.maximum(0, np.int32(np.array([[xc, yc, 0]])))
if drawPoints:
cv2.circle(frame, (int(imgpts[0][0]), int(imgpts[0][1])), 5, color=(255, 0, 255), thickness=-1)
return imgpts
def boundingBoxFromDCNN(centroid_data_x, centroid_data_y):
# use the closest point of the vehicle from DCNN detection
xc = centroid_data_x
yc = centroid_data_y
imgpts = np.maximum(0, np.int32(np.array([[xc, yc, 0]])))
if drawPoints:
cv2.circle(frame, (int(imgpts[0][0]), int(imgpts[0][1])), 5, color=(255, 255, 255), thickness=-1)
return imgpts
def drawBoundingBox(tvec, rvec, veh_dim, size_corr):
# calculate angles in horizontal and vertical direction
alpha_h = np.arctan(tvec[0] / tvec[2])
alpha_v = np.arctan(tvec[1] / tvec[2])
# calucalate yaw angle of the vehicle
r = R.from_rotvec(rvec)
yaw = round(r.as_euler('zxy', degrees=True)[0], 2)
# based on yaw angle of the vehicle, alpha angles may be negative
alpha_h = alpha_h if yaw < 0 else -alpha_h
alpha_v = alpha_v if yaw < 0 else -alpha_v
# modify dimensions of vehicle's bbox
veh_dim = np.multiply(veh_dim, [1 - alpha_h / 2, 1 + alpha_h / 2, 1 - alpha_v / 2, 1 + alpha_v / 2])
# use modified values to set corners of bbox, project these points onto the image and draw bbox
axis = np.float32([[veh_dim[2], veh_dim[0], 0], [veh_dim[2], veh_dim[1], 0], [veh_dim[3], veh_dim[1], 0],
[veh_dim[3], veh_dim[0], 0]])
imgpts, _ = cv2.projectPoints(axis, rvec, tvec / size_corr, mtx, dist)
imgpts = np.maximum(0, np.int32(imgpts).reshape(-1, 2))
cv2.drawContours(frame, [imgpts[0:4]], -1, (255, 0, 0), 5)
return veh_dim
# %%====================================
# FUNCTIONS FOR DISTANCE CALCULATION
def generatePointsBoundingBox(veh_dim):
# generate additional points on bounding box - 20 along the length and 8 along the width of the vehicle
points_l = 20
points_w = 8
o1 = np.linspace(veh_dim[0], veh_dim[1], points_l)
o2 = np.linspace(veh_dim[2], veh_dim[3], points_w)
object1 = np.zeros((points_l, 2))
object2 = np.zeros((points_l, 2))
object3 = np.zeros((points_w, 2))
object4 = np.zeros((points_w, 2))
object1[:, 0] = o1
object1[:, 1] = veh_dim[2]
object2[:, 0] = o1
object2[:, 1] = veh_dim[3]
object3[:, 0] = veh_dim[0]
object3[:, 1] = o2
object4[:, 0] = veh_dim[1]
object4[:, 1] = o2
# concatenate the points generated on each edge of bbox
object = np.concatenate((object1, object2, object3, object4))
w, h = object.shape
bbox = np.zeros((w, h + 1))
bbox[:, 0] = object[:, 1]
bbox[:, 1] = object[:, 0]
bbox[:, 2] = 0
return bbox
def findMinimumDistanceBoundingBox(source, bbox, tvec, rvec, size_corr):
# project generated bbox points onto image
imgpts, _ = cv2.projectPoints(bbox, rvec, tvec / size_corr, mtx, dist)
imgpts = np.maximum(0, np.int32(imgpts).reshape(-1, 2))
# find minimum distance between source of signal and generated bbox points
distance = np.inf
index = 0
for i in range(len(imgpts)):
d = np.sqrt(pow(source[0][0] - imgpts[i][0], 2) + pow(source[0][1] - imgpts[i][1], 2))
if (d < distance):
distance = d
index = i
# return the closest point
return imgpts[index]
def calculateDistance(lidar, aruco, bbox, markerLength, msp4, msp):
# calculate distances to Aruco marker and bbox of the vehicle
d_aruco = np.sqrt((lidar[0][0] - aruco[0][0]) * (lidar[0][0] - aruco[0][0]) + (lidar[0][1] - aruco[0][1]) * (
lidar[0][1] - aruco[0][1]))
d_bbox = np.sqrt((lidar[0][0] - bbox[0][0]) * (lidar[0][0] - bbox[0][0]) + (lidar[0][1] - bbox[0][1]) * (
lidar[0][1] - bbox[0][1]))
# convert distances from pixels to metres
dist_aruco = d_aruco * markerLength / ((msp4 + msp) / 2)
dist_bbox = d_bbox * markerLength / ((msp4 + msp) / 2)
return dist_aruco, dist_bbox
def drawLinesOnImage(source, point, cx, cy, dist_aruco, angle, veh_id, ang1=0, ang4=0):
# draw the line from source of the measurement to the closest point of the vehicle
cv2.line(frame, (int(source[0][0]), int(source[0][1])), (int(point[0]), int(point[1])), (0, 255, 255), 5)
# draw the line from source of the measurement to the centre of vehicle' Aruco marker
cv2.line(frame, (int(source[0][0]), int(source[0][1])), (int(cx), int(cy)), (0, 0, 255), 5)
if showDistancesOnImage:
font = cv2.FONT_HERSHEY_SIMPLEX
# calculate angles and position and convert them to text
dist_aruco = str(round(dist_aruco, 1)) + ','
angle = str(round(ang1 - ang4, 1)) + ' degrees'
# calculate the position where the text will be placed on image
position_red = tuple([int((source[0][0] + cx) / 2 - 200), int((source[0][1] + cy) / 2) - 50])
position_yellow = tuple([int((source[0][0] + cx) / 2 + 50), int((source[0][1] + cy) / 2) - 50])
# write the text onto the image
cv2.putText(frame, dist_aruco, position_red, font, 3.0, (0, 0, 255), 6, cv2.LINE_AA)
cv2.putText(frame, angle, position_yellow, font, 3.0, (0, 255, 255), 6, cv2.LINE_AA)
# %%====================================
# ALGORITHM PARAMETERS (DO NOT CHANGE!) AND DATA READ
height, width = 2160, 3840 # fixed input image/video resolution
markerLengthOrg = 0.55 # real size of the marker in metres, this value does not change in algorithm
markerLength = markerLengthOrg # real size of the marker in metres, this value changes in algorithm
marker_div = 1.2 # correction for altitude estimation from marker
div = 1.013 # additional correction for distance calculation (based on altitude test)
DIFF_MAX = 2 / 3 * step_frame * 2 # maximum displacement of ArUco centre between frames with vehicle speed of 72 km/h = 20 m/s
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
obj_points2 = np.array([[-markerLength / 2, markerLength / 2, 0],
[markerLength / 2, markerLength / 2, 0],
[markerLength / 2, -markerLength / 2, 0],
[-markerLength / 2, -markerLength / 2, 0]])
if useCentroidData:
centroid_data = readCentroidData(path_dcnn_data) # read centroid data from DCNN
if saveResults:
file = outputDataInit() # initialize output file for saving results
parameters = setArucoParameters() # create Aruco detection parameters
mtx, dist = readCameraParams() # read camera parameters
msp1_avg, msp2_avg, msp3_avg, msp4_avg = setAverageMarkerSize() # initialization of marker size averaging variables
detected_ID_prev = [0, 0, 0, 0] # initialization of vehicle detection state on previous frame
[cx1_prev, cy1_prev, cx2_prev, cy2_prev, cx3_prev, cy3_prev, cx4_prev, cy4_prev] = np.zeros(8,
dtype='int') # initialization of ArUco marker centres
gamma = 2 # gamma parameter value
lookUpTable = np.empty((1, 256), np.uint8) # look-up table for gamma correction
for i in range(256):
lookUpTable[0, i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
# host vehicle's Lidar wrt. Aruco marker in metres
veh4_coords_lidar = np.float32([[-0.05, -0.80, 0]])
# vehicle's centroid wrt. Aruco marker in metres
veh4_coords = np.float32([[0, 0.07, 0]])
veh1_coords = np.float32([[0, 0.42, 0]])
veh2_coords = np.float32([[0, 0.59, 0]])
veh3_coords = np.float32([[0, 0.58, 0]])
# initialize values if images are used
if useImages:
k = start_frame
stop_frame = len(os.listdir(path_input_images)) if stop_frame is None else stop_frame
# initialize values if video is used
elif useVideo:
video = cv2.VideoCapture(path_input_video)
k = start_frame
if start_frame > 1 and video.isOpened():
for i in range(start_frame - 1):
ret, frame = video.read()
if ret == False:
break
stop_frame = np.inf if stop_frame is None else stop_frame
# calculate maps for undistortion
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, mtx, (width, height), 5)
# iterate over frames
while k <= stop_frame and (useImages or (useVideo and video.isOpened())):
# read frame from image or video
if useImages:
frame = cv2.imread(path_input_images + "/image_%04d.png" % k)
elif useVideo:
ret, frame = video.read()
if ret == False:
break
detected_ID = [0, 0, 0, 0] # by default no vehicle is detected in image
# real vehicle dimensions in metres wrt. Aruco marker: back, front, left, right
veh4_dim = [-2.35, 2.49, -0.86, 0.86]
veh1_dim = [-1.95, 2.8, -0.9, 0.9]
veh2_dim = [-1.68, 2.86, -0.87, 0.87]
veh3_dim = [-1.32, 2.48, -0.86, 0.86]
# frame preprocessing - camera distortion removal and gamma correction
frame = preprocessFrame(frame)
# convert image to grayscale and detect Aruco markers
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
corners, ids = detectArucoMarkers(gray, parameters)
# write me adaptive grayscale in opencv
# %%====================================
# MARKER DETECTION AND POINTS CALCULATIONS
tvec = np.zeros((5, 3))
rvec = np.zeros((5, 3))
# if any marker was detected
if np.all(ids != None):
# estimate pose of detected markers
# rvec, tvec, _ = aruco.estimatePoseSingleMarkers(corners, markerLength, mtx, dist)
# iterate over all detected markers
for i in range(len(ids)):
# only markers with ID={1,2,3,4} are used at this moment
# rvectmp=rvec[i][0] #compartible w previous version
# tvectmp=tvec[i][0] #compartible w previous version
flag, rvecs, tvecs, r2 = cv2.solvePnPGeneric(
obj_points2, corners[i], mtx, dist,
flags=cv2.SOLVEPNP_IPPE_SQUARE)
rvectmp = rvecs[0].ravel()
tvectmp = tvecs[0].ravel()
tvec[i] = tvectmp
rvec[i] = rvectmp
if (ids[i][0] == 4): # vehicle 4 (host)
cx4, cy4, msp, diff4, ang4 = getMarkerData(corners[i][0], rvectmp,
None if k == start_frame else cx4_prev,
None if k == start_frame else cy4_prev) # get detected marker parameters
if detected_ID_prev[3] == 0: # if this marker was not detected on previous frame, it may be 'new' or FP
detected_ID[3] = 1 # mark vehicle as detected
cx4_prev, cy4_prev = cx4, cy4 # save position of the marker in the image
if (detected_ID_prev[
3] == 1 and diff4 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
if drawMarkers:
cv2.drawContours(frame, [np.maximum(0, np.int32(corners[i][0]))], -1, (0, 255, 0), 3)
if drawMarkersAxes:
aruco.drawAxis(frame, mtx, dist, rvectmp, tvectmp, markerLength)
if showDataOnImage:
printDataOnImage(corners[i][0][0], tvectmp, rvectmp, ids[i][0])
detected_ID[3] = 1 # mark vehicle as detected
altitude = tvectmp[2] # altitude info
markerLength = markerLengthCorrection(
altitude) # correction of original marker size based on altitude
altitude = altitude / marker_div # calculate real altitude
size_corr4, msp4 = calculateAverageMarkerSize(msp4_avg, msp) # marker size averaging
leds = detectAndDrawLEDs(gray, tvectmp, rvectmp, size_corr4, msp4, LEDs_threshold) # LEDs detection
imgpts_veh4 = centroidFromAruco(veh4_coords, tvectmp, rvectmp,
size_corr4) # calculate centroid of the vehicle wrt. Aruco marker
imgpts_veh4_lidar = centroidFromAruco(veh4_coords_lidar, tvectmp, rvectmp,
size_corr4) # calculate Lidar's position wrt. Aruco marker
cx4_prev, cy4_prev = cx4, cy4 # save position of the marker in the image
if useCentroidData:
imgpts_veh4_dcnn = centroidFromDCNN(centroid_data[k - 1][1], centroid_data[k - 1][
2]) # calculate Aruco position wrt. vehicle centroid from DCNN
veh4_dim = drawBoundingBox(tvectmp, rvectmp, veh4_dim,
size_corr4) # draw bounding box of the vehicle
else: # detected marker is a FP, change its ID to incorrect value
ids[i][0] = -1
if ([4] not in ids): # if host is not detected, use altitude data from another marker
altitude = tvectmp[2] # altitude info
markerLength = markerLengthCorrection(altitude) # correction of original marker size based on altitude
altitude = altitude / marker_div # calculate real altitude
if (ids[i][0] == 1): # vehicle 1
cx1, cy1, msp, diff1, ang1 = getMarkerData(corners[i][0], rvectmp,
None if k == start_frame else cx1_prev,
None if k == start_frame else cy1_prev) # get detected marker parameters
if detected_ID_prev[0] == 0: # if this marker was not detected on previous frame, it may be 'new' or FP
detected_ID[0] = 1 # mark vehicle as detected
cx1_prev, cy1_prev = cx1, cy1 # save position of the marker in the image
if (detected_ID_prev[
0] == 1 and diff1 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
if drawMarkers:
cv2.drawContours(frame, [np.maximum(0, np.int32(corners[i][0]))], -1, (0, 255, 0), 3)
if drawMarkersAxes:
aruco.drawAxis(frame, mtx, dist, rvectmp, tvectmp, markerLength)
if showDataOnImage:
printDataOnImage(corners[i][0][0], tvectmp, rvectmp, ids[i][0])
detected_ID[0] = 1 # mark vehicle as detected
size_corr1, msp1 = calculateAverageMarkerSize(msp1_avg, msp) # marker size averaging
imgpts_veh1 = centroidFromAruco(veh1_coords, tvectmp, rvectmp,
size_corr1) # calculate centroid of the vehicle wrt. Aruco marker
cx1_prev, cy1_prev = cx1, cy1 # save position of the marker in the image
if useCentroidData:
imgpts_veh1_dcnn = centroidFromDCNN(centroid_data[k - 1][5], centroid_data[k - 1][
6]) # calculate Aruco position wrt. vehicle centroid from DCNN
imgpts_veh1_dcnn_bbox = boundingBoxFromDCNN(centroid_data[k - 1][7], centroid_data[k - 1][
8]) # calculate closest point of the vehicle from DCNN
veh1_dim = drawBoundingBox(tvectmp, rvectmp, veh1_dim,
size_corr1) # draw bounding box of the vehicle
else: # detected marker is a FP, change its ID to incorrect value
ids[i][0] = -1
if (ids[i][0] == 2): # vehicle 2
cx2, cy2, msp, diff2, ang2 = getMarkerData(corners[i][0], rvectmp,
None if k == start_frame else cx2_prev,
None if k == start_frame else cy2_prev) # get detected marker parameters
if detected_ID_prev[1] == 0: # if this marker was not detected on previous frame, it may be 'new' or FP
detected_ID[1] = 1 # mark vehicle as detected
cx2_prev, cy2_prev = cx2, cy2 # save position of the marker in the image
if (detected_ID_prev[
1] == 1 and diff2 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
if drawMarkers:
cv2.drawContours(frame, [np.maximum(0, np.int32(corners[i][0]))], -1, (0, 255, 0), 3)
if drawMarkersAxes:
aruco.drawAxis(frame, mtx, dist, rvectmp, tvectmp, markerLength)
if showDataOnImage:
printDataOnImage(corners[i][0][0], tvectmp, rvectmp, ids[i][0])
detected_ID[1] = 1 # mark vehicle as detected
size_corr2, msp2 = calculateAverageMarkerSize(msp2_avg, msp) # marker size averaging
imgpts_veh2 = centroidFromAruco(veh2_coords, tvectmp, rvectmp,
size_corr2) # calculate centroid of the vehicle wrt. Aruco marker
cx2_prev, cy2_prev = cx2, cy2 # save position of the marker in the image
if useCentroidData:
imgpts_veh2_dcnn = centroidFromDCNN(centroid_data[k - 1][9], centroid_data[k - 1][
10]) # calculate Aruco position wrt. vehicle centroid from DCNN
imgpts_veh2_dcnn_bbox = boundingBoxFromDCNN(centroid_data[k - 1][11], centroid_data[k - 1][
12]) # calculate closest point of the vehicle from DCNN
veh2_dim = drawBoundingBox(tvectmp, rvectmp, veh2_dim,
size_corr2) # draw bounding box of the vehicle
else: # detected marker is a FP, change its ID to incorrect value
ids[i][0] = -1
if (ids[i][0] == 3): # vehicle 3
cx3, cy3, msp, diff3, ang3 = getMarkerData(corners[i][0], rvectmp,
None if k == start_frame else cx3_prev,
None if k == start_frame else cy3_prev) # get detected marker parameters
if detected_ID_prev[2] == 0: # if this marker was not detected on previous frame, it may be 'new' or FP
detected_ID[2] = 1 # mark vehicle as detected
cx3_prev, cy3_prev = cx3, cy3 # save position of the marker in the image
if (detected_ID_prev[
2] == 1 and diff3 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
if drawMarkers:
cv2.drawContours(frame, [np.maximum(0, np.int32(corners[i][0]))], -1, (0, 255, 0), 3)
if drawMarkersAxes:
aruco.drawAxis(frame, mtx, dist, rvectmp, tvectmp, markerLength)
if showDataOnImage:
printDataOnImage(corners[i][0][0], tvectmp, rvectmp, ids[i][0])
detected_ID[2] = 1 # mark vehicle as detected
size_corr3, msp3 = calculateAverageMarkerSize(msp3_avg, msp) # marker size averaging
imgpts_veh3 = centroidFromAruco(veh3_coords, tvectmp, rvectmp,
size_corr3) # calculate centroid of the vehicle wrt. Aruco marker
cx3_prev, cy3_prev = cx3, cy3 # save position of the marker in the image
if useCentroidData:
imgpts_veh3_dcnn = centroidFromDCNN(centroid_data[k - 1][13], centroid_data[k - 1][
14]) # calculate Aruco position wrt. vehicle centroid from DCNN
imgpts_veh3_dcnn_bbox = boundingBoxFromDCNN(centroid_data[k - 1][15], centroid_data[k - 1][
16]) # calculate closest point of the vehicle from DCNN
veh3_dim = drawBoundingBox(tvectmp, rvectmp, veh3_dim,
size_corr3) # draw bounding box of the vehicle
else: # detected marker is a FP, change its ID to incorrect value
ids[i][0] = -1
# %%====================================
# DISTANCE CALCULATION FOR VEHICLES
# iterate again over all detected markers to use results from current frame
for i in range(len(ids)):
if (ids[i][0] == 4): # get host car marker ID
# iterate over all markers to calculate distances to them from host
for j in range(len(ids)):
if (ids[j][0] == 1): # vehicle 1
# start = time.time_ns()
if (detected_ID_prev[
0] == 1 and diff1 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
bbox = generatePointsBoundingBox(veh1_dim) # generate additional points for bounding box
if sourceLidar:
point = findMinimumDistanceBoundingBox(imgpts_veh4_lidar, bbox, tvec[j], rvec[j],
size_corr1) # find the closest point of the bbox from Lidar
dist_veh1_aruco, dist_veh1_aruco_bbox = calculateDistance(imgpts_veh4_lidar,
np.float32([[cx1, cy1]]),
[point], markerLength, msp4,
msp1) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(imgpts_veh4_lidar, point, cx1, cy1, dist_veh1_aruco,
dist_veh1_aruco_bbox,
ids[j][0]) # draw lines between Lidar and vehicle
else:
point = findMinimumDistanceBoundingBox(np.float32([[cx4, cy4]]), bbox, tvec[j], rvec[j],
size_corr1) # find the closest point of the bbox from host's Aruco
dist_veh1_aruco, dist_veh1_aruco_bbox = calculateDistance(np.float32([[cx4, cy4]]),
np.float32([[cx1, cy1]]),
[point], markerLength, msp4,
msp1) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(np.float32([[cx4, cy4]]), point, cx1, cy1, dist_veh1_aruco,
dist_veh1_aruco_bbox, ids[j][0], ang1,
ang4) # draw lines between host's Aruco and vehicle
if useCentroidData:
dist_veh1_dcnn, dist_veh1_dcnn_bbox = calculateDistance(imgpts_veh4_lidar,
imgpts_veh1_dcnn,
imgpts_veh1_dcnn_bbox,
markerLength, msp4,
msp1) # calculate distances in metres for DCNN method
if (ids[j][0] == 2): # vehicle 2
if (detected_ID_prev[
1] == 1 and diff2 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
bbox = generatePointsBoundingBox(veh2_dim) # generate additional points for bounding box
if sourceLidar:
point = findMinimumDistanceBoundingBox(imgpts_veh4_lidar, bbox, tvec[j], rvec[j],
size_corr2) # find the closest point of the bbox from Lidar
dist_veh2_aruco, dist_veh2_aruco_bbox = calculateDistance(imgpts_veh4_lidar,
np.float32([[cx2, cy2]]),
[point], markerLength, msp4,
msp2) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(imgpts_veh4_lidar, point, cx2, cy2, dist_veh2_aruco,
dist_veh2_aruco_bbox, ids[j][0], ang2,
ang4) # draw lines between Lidar and vehicle
else:
point = findMinimumDistanceBoundingBox(np.float32([[cx4, cy4]]), bbox, tvec[j], rvec[j],
size_corr2) # find the closest point of the bbox from host's Aruco
dist_veh2_aruco, dist_veh2_aruco_bbox = calculateDistance(np.float32([[cx4, cy4]]),
np.float32([[cx2, cy2]]),
[point], markerLength, msp4,
msp2) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(np.float32([[cx4, cy4]]), point, cx2, cy2, dist_veh2_aruco,
dist_veh2_aruco_bbox,
ids[j][0]) # draw lines between host's Aruco and vehicle
if useCentroidData:
dist_veh2_dcnn, dist_veh2_dcnn_bbox = calculateDistance(imgpts_veh4_lidar,
imgpts_veh2_dcnn,
imgpts_veh2_dcnn_bbox,
markerLength, msp4,
msp2) # calculate distances in metres for DCNN method
if (ids[j][0] == 3): # vehicle 3
if (detected_ID_prev[
2] == 1 and diff3 < DIFF_MAX) or k == start_frame: # if this marker was detected on previous frame and its position in the image is similar
bbox = generatePointsBoundingBox(veh3_dim) # generate additional points for bounding box
if sourceLidar:
point = findMinimumDistanceBoundingBox(imgpts_veh4_lidar, bbox, tvec[j], rvec[j],
size_corr3) # find the closest point of the bbox from Lidar
dist_veh3_aruco, dist_veh3_aruco_bbox = calculateDistance(imgpts_veh4_lidar,
np.float32([[cx3, cy3]]),
[point], markerLength, msp4,
msp3) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(imgpts_veh4_lidar, point, cx3, cy3, dist_veh3_aruco,
dist_veh3_aruco_bbox,
ids[j][0]) # draw lines between Lidar and vehicle
else:
point = findMinimumDistanceBoundingBox(np.float32([[cx4, cy4]]), bbox, tvec[j], rvec[j],
size_corr3) # find the closest point of the bbox from host's Aruco
dist_veh3_aruco, dist_veh3_aruco_bbox = calculateDistance(np.float32([[cx4, cy4]]),
np.float32([[cx3, cy3]]),
[point], markerLength, msp4,
msp3) # calculate distances in metres for Aruco method
if drawLines:
drawLinesOnImage(np.float32([[cx4, cy4]]), point, cx3, cy3, dist_veh3_aruco,
dist_veh3_aruco_bbox, ids[j][0], ang3,
ang4) # draw lines between host's Aruco and vehicle
if useCentroidData:
dist_veh3_dcnn, dist_veh3_dcnn_bbox = calculateDistance(imgpts_veh4_lidar,
imgpts_veh3_dcnn,
imgpts_veh3_dcnn_bbox,
markerLength, msp4,
msp3) # calculate distances in metres for DCNN method
detected_ID_prev = detected_ID # copy detection state of the current frame to use in the next frame
# %%====================================
# IMAGE SHOW AND DATA WRITE
# show results on image
if showImage:
cv2.namedWindow("Detection result", cv2.WINDOW_NORMAL)
cv2.imshow("Detection result", frame)
if cv2.waitKey(cv2waitKeyVal) & 0xFF == ord('q'):
break
# save results to a file
if saveResults:
outputData(file)
# save images to a folder
if saveImages:
cv2.imwrite(path_output_images + "image_%04d.png" % k, frame)
# increment frame number
k = k + step_frame
# skip frames from video
if useVideo:
for i in range(step_frame - 1):
ret, frame = video.read()
if ret == False:
break
if saveResults:
file.close()
if useVideo:
video.release()
if showImage:
cv2.destroyAllWindows()