-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrangable_float.rs
436 lines (392 loc) · 14.6 KB
/
rangable_float.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
extern crate num_bigint;
extern crate num_traits;
use std::{ self, f64, f32 };
use super::{ Rng, Rangeable, ZeroOneable };
#[cfg(feature = "exact-floats")]
use self::num_bigint::{ BigUint, BigInt, Sign };
#[cfg(feature = "exact-floats")]
use self::num_traits::{ Signed, Zero, NumCast };
#[cfg(feature = "exact-floats")]
use std::cmp::min;
#[allow(unused_imports)] // rustc incorrectly thinks num_traits::One is unused
use self::num_traits::One;
trait UnsignedInt {
fn bits(&self) -> usize;
}
impl UnsignedInt for u64 {
fn bits(&self) -> usize {
(64 - self.leading_zeros()) as usize
}
}
impl UnsignedInt for u32 {
fn bits(&self) -> usize {
(32 - self.leading_zeros()) as usize
}
}
fn bitmask<T, S>(bits: S) -> T
where T: std::ops::Shl<S, Output=T> + std::ops::Sub<T, Output=T> + From<u8> {
(T::from(1u8) << bits) - T::from(1u8)
}
fn mask<T, S>(val: T, bits: S) -> T
where T: std::ops::Shl<S, Output=T> + std::ops::Sub<T, Output=T> + std::ops::BitAnd<T, Output=T> + From<u8> {
val & bitmask(bits)
}
macro_rules! impl_float {
($fty: ty, $uty: ty, $mantissa_bits: expr, $exp_bits: expr, $gen_func: ident) => (
impl Rangeable for $fty {
type Output = $fty;
fn rng_below<R: Rng + ?Sized>(rng: &mut R, limit: $fty) -> $fty {
Self::rng_range(rng, 0.0, limit)
}
fn zero() -> Self::Output {
return 0.0
}
fn is_neg(&self) -> bool {
return *self < 0.0;
}
#[cfg(not(feature = "exact-floats"))]
fn rng_range<R: Rng + ?Sized>(rng: &mut R, start: $fty, end: $fty) -> $fty {
if start >= end {
panic!("empty or inverted range");
}
let start_exp = mask((start.to_bits() >> $mantissa_bits), $exp_bits);
let end_exp = mask((end.to_bits() >> $mantissa_bits), $exp_bits);
if start_exp > bitmask($exp_bits) - 3 || end_exp > bitmask($exp_bits) - 3 {
panic!("Overflow or NaN");
}
let scale = end - start;
let offset = start - scale;
assert!(scale.is_finite() && offset.is_finite());
let exp = bitmask($exp_bits - 1) << $mantissa_bits;
loop {
let frac = mask(rng.$gen_func(), $mantissa_bits);
let res = <$fty>::from_bits(frac | exp) * scale + offset;
// Check for rounding errors
if res >= start && res < end {
return res
}
}
}
#[cfg(feature = "exact-floats")]
fn rng_range<R: Rng + ?Sized>(rng: &mut R, start: $fty, end: $fty) -> $fty {
fn parse_float(val: $fty) -> (BigInt, $uty) {
assert!(val.is_finite());
let bits = val.to_bits();
let neg = (bits >> ($mantissa_bits + $exp_bits)) == 1;
let mut exp = mask(bits >> $mantissa_bits, $exp_bits);
let mut significand = mask(bits, $mantissa_bits);
assert!(exp != bitmask($exp_bits));
if exp > 0 {
significand |= 1 as $uty << $mantissa_bits;
} else {
exp = 1;
}
if significand != 0 {
let zeros = significand.trailing_zeros();
significand >>= zeros;
exp += zeros as $uty;
}
(BigInt::from_biguint(if neg { Sign::Minus } else { Sign::Plus },
BigUint::from(significand)),
exp)
}
if start >= end {
panic!("empty or inverted range");
}
if !start.is_finite() || !end.is_finite() {
panic!("Start or end is NaN or infinite")
}
let mut res_exp;
let (mut start_parsed, start_parsed_exp) = parse_float(start);
let (mut end_parsed, end_parsed_exp) = parse_float(end);
if start_parsed_exp > end_parsed_exp {
start_parsed = &start_parsed << ((start_parsed_exp - end_parsed_exp) as usize);
res_exp = end_parsed_exp;
} else {
end_parsed = &end_parsed << ((end_parsed_exp - start_parsed_exp) as usize);
res_exp = start_parsed_exp;
}
let mut res_bigint = rng.range(&start_parsed, &end_parsed);
let is_neg = res_bigint.is_negative();
if is_neg {
res_bigint = -res_bigint;
}
let mut res: $uty;
let mut len = res_bigint.bits();
const GOAL_LEN: usize = $mantissa_bits + 1;
if len > GOAL_LEN {
// Make sure that res_biguint doesn't have too many significan digits
let mut res_biguint = res_bigint.to_biguint().unwrap();
drop(res_bigint); // drop to prevent accidental use
while len > GOAL_LEN {
let extra = len - GOAL_LEN;
let round_down = is_neg && (&res_biguint & bitmask::<BigUint, _>(extra)) != Zero::zero();
res_biguint >>= extra;
res_exp += extra as $uty;
assert!(res_exp <= ((1 << $exp_bits) - 2));
if round_down {
// Round towards negative infinity.
res_biguint += 1u32;
}
assert!(res_biguint.bits() == GOAL_LEN || (res_biguint.bits() == GOAL_LEN + 1 && round_down));
len = res_biguint.bits();
}
res = NumCast::from(res_biguint).unwrap();
} else {
// Make sure that res has enough significant digits
res = NumCast::from(res_bigint).unwrap();
while len < GOAL_LEN && res_exp > 1 {
let additional = min(GOAL_LEN - len, (res_exp - 1) as usize);
let additional_bits = mask(rng.$gen_func(), additional);
res <<= additional;
if !is_neg {
res |= additional_bits;
} else {
res -= additional_bits;
}
res_exp -= additional as $uty;
len = res.bits();
}
// 10_0000_0000_0000 is an edgecase. When we subtract from this value we lose one bit
// at the top and get fewer total bits. This means that we can fit in an extra bit at
// the end, which if it's a zero will prevent rounding from getting us back to the
// original value.
// Make sure not to run this if the orignal bit-length was over 53 bits and we've already
// rounded to get to this result.
// Use !rng.chance() to fit better with testing code below, which expects that generating
// high numbers from the rng, results in a value closer to the end of the range.
if is_neg && res == (1 as $uty << $mantissa_bits) && res_exp > 1 &&
!rng.chance(1, 2) {
res = (2 as $uty << $mantissa_bits) - 1;
res_exp -= 1;
}
}
// Convert to f64
assert!(res.bits() == GOAL_LEN || (res_exp == 1 && res.bits() < GOAL_LEN));
if (res & (1 as $uty << $mantissa_bits)) == 0 {
assert_eq!(res_exp, 1);
res_exp = 0;
}
res &= !(1 as $uty << $mantissa_bits);
res |= res_exp << $mantissa_bits;
if is_neg {
res |= 1 << ($mantissa_bits + $exp_bits);
}
<$fty>::from_bits(res)
}
}
impl ZeroOneable for $fty {
#[cfg(not(feature = "exact-floats"))]
fn rng_zeroone<R: Rng + ?Sized>(rng: &mut R) -> $fty {
let frac = rng.$gen_func() & ((1 << $mantissa_bits) - 1);
let exp = ((1 as $uty << ($exp_bits - 1)) - 1) << $mantissa_bits;
<$fty>::from_bits(frac | exp) - 1.0
}
#[cfg(feature = "exact-floats")]
fn rng_zeroone<R: Rng + ?Sized>(rng: &mut R) -> $fty {
const GOAL_LEN: usize = $mantissa_bits + 1;
let mut exp = bitmask::<$uty, _>($exp_bits - 1) - 1;
let mut res = rng.$gen_func() & ((1 as $uty << GOAL_LEN) - 1);
let mut len = res.bits();
while len < GOAL_LEN && exp > 1 {
let additional = min(GOAL_LEN - len, (exp - 1) as usize);
let additional_bits = mask(rng.$gen_func(), additional);
res <<= additional;
res |= additional_bits;
exp -= additional as $uty;
len = res.bits();
}
assert!(res.bits() == GOAL_LEN || (exp == 1 && res.bits() < GOAL_LEN));
if (res & (1 as $uty << $mantissa_bits)) == 0 {
assert_eq!(exp, 1);
exp = 0;
}
res &= !(1 as $uty << $mantissa_bits);
res |= exp << $mantissa_bits;
<$fty>::from_bits(res)
}
}
)
}
impl_float!(f64, u64, 52, 11, gen_u64);
impl_float!(f32, u32, 23, 8, gen_u32);
#[cfg(test)]
mod tests {
use super::*;
use super::super::StdRng;
use std::panic::catch_unwind;
#[test]
fn test_float() {
let mut rng = StdRng::new();
for val in [0.000001f64, 1000000.0, 47.0, f64::from_bits(1), f64::from_bits(0x7fcf_ffff_ffff_ffff)].iter().cloned() {
for _ in 0..1000 {
let x = rng.below(val);
assert!(0.0 <= x && x < val);
let x = rng.range(-val, val);
assert!(-val <= x && x < val);
if val - 1.0 != val {
let x = rng.range(val - 1.0, val);
assert!(val - 1.0 <= x && x < val);
let x = rng.range(-val - 1.0, -val);
assert!(-val - 1.0 <= x && x < -val);
}
}
let x = rng.below(&val);
assert!(0.0 <= x && x < val);
let x = rng.range(&-val, &val);
assert!(-val <= x && x < val);
}
assert!(catch_unwind(|| StdRng::new().below(f64::NAN)).is_err());
assert!(catch_unwind(|| StdRng::new().below(f64::INFINITY)).is_err());
for val in [0.000001f32, 1000000.0, 47.0, f32::from_bits(1), f32::from_bits(0x7e7f_ffff)].iter().cloned() {
for _ in 0..1000 {
let x = rng.below(val);
assert!(0.0 <= x && x < val);
let x = rng.range(-val, val);
assert!(-val <= x && x < val);
if val - 1.0 != val {
let x = rng.range(val - 1.0, val);
assert!(val - 1.0 <= x && x < val);
let x = rng.range(-val - 1.0, -val);
assert!(-val - 1.0 <= x && x < -val);
}
}
let x = rng.below(&val);
assert!(0.0 <= x && x < val);
let x = rng.range(&-val, &val);
assert!(-val <= x && x < val);
}
assert!(catch_unwind(|| StdRng::new().below(f32::NAN)).is_err());
assert!(catch_unwind(|| StdRng::new().below(f32::INFINITY)).is_err());
}
#[cfg(feature = "exact-floats")]
struct TestRng {
vals: Vec<Option<u64>>,
repeat: Option<u64>,
}
#[cfg(feature = "exact-floats")]
impl Rng for TestRng {
fn gen_u64(&mut self) -> u64 { self.test_gen_u64(0) }
fn test_gen_u32(&mut self, limit: u32) -> u32 { self.test_gen_u64(limit as u64) as u32 }
fn test_gen_u64(&mut self, limit: u64) -> u64 {
match (self.repeat, self.vals.pop()) {
(_, Some(Some(val))) => val,
(_, Some(None)) => limit.wrapping_sub(1),
(Some(repeat), None) => repeat,
(None, None) => limit.wrapping_sub(1),
}
}
fn gen_biguint(&mut self, _bits: usize) -> BigUint { panic!(""); }
fn test_gen_biguint(&mut self, _bits: usize, limit: &BigUint) -> BigUint {
match (self.repeat, self.vals.pop()) {
(_, Some(Some(val))) => BigUint::from(val),
(_, Some(None)) => limit - BigUint::one(),
(Some(repeat), None) => BigUint::from(repeat),
(None, None) => limit - BigUint::one(),
}
}
}
#[test]
#[cfg(feature = "exact-floats")]
fn test_exact_float() {
let mut vals: Vec<f64> =
[0i64,
0x0000_0f00_0000_0000,
0x0001_0000_0000_0000,
0x0004_0000_0000_0000,
0x0008_0000_0000_0000,
0x0010_0000_0000_0000,
0x0020_0000_0000_0000,
0x0040_0000_0000_0000,
0x0100_0000_0000_0000,
0x00cd_ef12_3456_789a,
0x0100_ffff_ffff_ffff,
0x010f_ffff_ffff_ffff,
0x0400_1234_5678_abcd,
0x7fef_ffff_ffff_ffff,
].iter().cloned()
.flat_map(|x| (-2i64..3i64).map(move |y| x + y))
.map(|x| f64::from_bits(x as u64))
.flat_map(|x| vec![x, -x].into_iter())
.filter(|x| x.is_finite())
.collect();
vals.sort_by(|a, b| a.partial_cmp(b).unwrap());
vals.dedup();
for a in vals.iter().cloned() {
for b in vals.iter().cloned().filter(|&b| b > a) {
let mut rng = TestRng { vals: vec![], repeat: Some(0) };
assert_eq!(rng.range(a, b), a);
let mut rng = TestRng { vals: vec![Some(1)], repeat: Some(0) };
let res = rng.range(a, b);
assert!(a <= res && res < b);
let mut rng = TestRng { vals: vec![], repeat: None };
let res = rng.range(a, b);
if b > 0.0 {
assert_eq!(res, f64::from_bits(b.to_bits() - 1));
} else if b < 0.0 {
assert_eq!(res, f64::from_bits(b.to_bits() + 1));
} else {
assert_eq!(res, f64::from_bits(0x8000_0000_0000_0001));
}
}
}
let mut vals: Vec<f32> =
[0i32,
0x000f_0000,
0x0008_0000,
0x0020_0000,
0x0040_0000,
0x0080_0000,
0x0100_0000,
0x0200_0000,
0x0800_0000,
0x5678_abcd,
0x0807_ffff,
0x087f_ffff,
0x4012_3456,
0x7f7f_ffff,
].iter().cloned()
.flat_map(|x| (-2i32..3i32).map(move |y| x + y))
.map(|x| f32::from_bits(x as u32))
.flat_map(|x| vec![x, -x].into_iter())
.filter(|x| x.is_finite())
.collect();
vals.sort_by(|a, b| a.partial_cmp(b).unwrap());
vals.dedup();
for a in vals.iter().cloned() {
for b in vals.iter().cloned().filter(|&b| b > a) {
let mut rng = TestRng { vals: vec![], repeat: Some(0) };
let res = rng.range(a, b);
assert_eq!(res, a);
let mut rng = TestRng { vals: vec![], repeat: Some(0) };
assert_eq!(rng.range(a, b), a);
let mut rng = TestRng { vals: vec![], repeat: None };
let res = rng.range(a, b);
if b > 0.0 {
assert_eq!(res, f32::from_bits(b.to_bits() - 1));
} else if b < 0.0 {
assert_eq!(res, f32::from_bits(b.to_bits() + 1));
} else {
assert_eq!(res, f32::from_bits(0x8000_0001));
}
}
}
}
#[test]
#[cfg(feature = "exact-floats")]
fn test_exact_zeroone() {
let mut rng = TestRng { vals: vec![], repeat: Some(0) };
assert_eq!(rng.zeroone::<f32>(), 0.0);
let mut rng = TestRng { vals: vec![], repeat: Some(0xffff_ffff_ffff_ffff) };
let res: f32 = rng.zeroone();
assert!(0.9999 < res && res < 1.0);
assert_eq!(res, f32::from_bits(0x3f7f_ffff));
let res: f64 = rng.zeroone();
assert!(0.9999 < res && res < 1.0);
assert_eq!(res, f64::from_bits(0x3fef_ffff_ffff_ffff));
let mut rng = TestRng { vals: vec![Some(1), Some(0)], repeat: Some(0) };
assert_eq!(rng.zeroone::<f64>().to_bits(), 0x3950_0000_0000_0000);
let mut rng = TestRng { vals: vec![Some(1), Some(0)], repeat: Some(0) };
assert_eq!(rng.zeroone::<f32>().to_bits(), 0x2780_0000);
}
}